IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5331-d623348.html
   My bibliography  Save this article

Tribological Performance of Biomass-Derived Bio-Alcohol and Bio-Ketone Fuels

Author

Listed:
  • Omid Doustdar

    (Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Soheil Zeraati-Rezaei

    (Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Jose Martin Herreros

    (Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Athanasios Tsolakis

    (Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Karl D. Dearn

    (Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

  • Miroslaw Lech Wyszynski

    (Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK)

Abstract

This study relates to developing future alternative fuels and focuses on the effects of a fuel’s molecular structure on its properties and performance in advanced propulsion systems. The tribological performance of various biomass-derived oxygenated alternative fuels, including butanol, pentanol, cyclopentanol, cyclopentanone, and gasoline and their blends with diesel, was investigated. Lubricity tests were conducted using a high-frequency reciprocating rig (HFRR). Cyclopentanone-diesel and cyclopentanol-diesel blends result in smaller wear scar sizes compared to using their neat forms. A lower steel disc contaminated with the alternative fuels during the HFRR tests resulted in worn surface roughness values lower than those of the neat diesel by up to 20%. It is believed that these reductions are mainly due to the presence of the hydroxyl group and the carbonyl group in alcohols and ketones, respectively, which make them more polar and consequently helps the formation of the protective lubrication film on the worn moving surfaces during the sliding process. Overall, the results from this study indicate that environmentally friendly cyclopentanol and cyclopentanone are practical and efficient fuel candidates for future advanced propulsion systems.

Suggested Citation

  • Omid Doustdar & Soheil Zeraati-Rezaei & Jose Martin Herreros & Athanasios Tsolakis & Karl D. Dearn & Miroslaw Lech Wyszynski, 2021. "Tribological Performance of Biomass-Derived Bio-Alcohol and Bio-Ketone Fuels," Energies, MDPI, vol. 14(17), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5331-:d:623348
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5331/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5331/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    2. Yan, Kai & Wu, Guosheng & Lafleur, Todd & Jarvis, Cody, 2014. "Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 663-676.
    3. Rajesh Kumar, B. & Saravanan, S., 2016. "Use of higher alcohol biofuels in diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 84-115.
    4. Maru, Marcia M. & Trommer, Rafael M. & Cavalcanti, Kátia F. & Figueiredo, Elizabeth S. & Silva, Rui F. & Achete, Carlos A., 2014. "The Stribeck curve as a suitable characterization method of the lubricity of biodiesel and diesel blends," Energy, Elsevier, vol. 69(C), pages 673-681.
    5. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    6. Xu, Yufu & Wang, Qiongjie & Hu, Xianguo & Li, Chuan & Zhu, Xifeng, 2010. "Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig," Energy, Elsevier, vol. 35(1), pages 283-287.
    7. Abdul-Manan, Amir F.N. & Won, Hyun-Woo & Li, Yang & Sarathy, S. Mani & Xie, Xiaomin & Amer, Amer A., 2020. "Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids," Applied Energy, Elsevier, vol. 267(C).
    8. Sukjit, E. & Herreros, J.M. & Dearn, K.D. & García-Contreras, R. & Tsolakis, A., 2012. "The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanol -diesel blends," Energy, Elsevier, vol. 42(1), pages 364-374.
    9. Bao, Xiuchao & Jiang, Yizhou & Xu, Hongming & Wang, Chongming & Lattimore, Thomas & Tang, Lan, 2017. "Laminar flame characteristics of cyclopentanone at elevated temperatures," Applied Energy, Elsevier, vol. 195(C), pages 671-680.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    2. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Alzaghrini, Nadine & Milovanoff, Alexandre & Roy, Riddhiman & Abdul-Manan, Amir F.N. & McKechnie, Jon & Posen, I. Daniel & MacLean, Heather L., 2024. "Closing the GHG mitigation gap with measures targeting conventional gasoline light-duty vehicles – A scenario-based analysis of the U.S. fleet," Applied Energy, Elsevier, vol. 359(C).
    4. Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
    5. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    6. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Experimental study of homogeneous charge compression ignition combustion in a light-duty diesel engine fueled with isopropanol–gasoline blends," Energy, Elsevier, vol. 264(C).
    7. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    8. Cornejo, A. & Barrio, I. & Campoy, M. & Lázaro, J. & Navarrete, B., 2017. "Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1400-1413.
    9. Yesilyurt, Murat Kadir & Eryilmaz, Tanzer & Arslan, Mevlüt, 2018. "A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/," Energy, Elsevier, vol. 165(PB), pages 1332-1351.
    10. Diego Perrone & Teresa Castiglione & Pietropaolo Morrone & Ferdinando Pantano & Sergio Bova, 2023. "Energetic, Economic and Environmental Performance Analysis of a Micro-Combined Cooling, Heating and Power (CCHP) System Based on Biomass Gasification," Energies, MDPI, vol. 16(19), pages 1-22, September.
    11. Qian, Yong & Wu, Zhiyong & Guo, Jinjing & Li, Zilong & Jiang, Chenxu & Lu, Xingcai, 2019. "Experimental studies on the key parameters controlling the combustion and emission in premixed charge compression ignition concept based on diesel surrogates," Applied Energy, Elsevier, vol. 235(C), pages 233-246.
    12. Shi, Weibo & Li, Zihang & Zhao, Zhe & Yu, Xiumin & Sun, Ping & Sang, Tao & Dong, Wei & Li, Ming, 2024. "A renewable clean energy application: Oxyhydrogen negative pressure inhalation for enhancing the combustion and emission characteristics of isopropanol/gasoline dual-fuel combined injection engine," Energy, Elsevier, vol. 290(C).
    13. Zhang, Guanglu & Lin, Boqiang, 2018. "Impact of structure on unified efficiency for Chinese service sector—A two-stage analysis," Applied Energy, Elsevier, vol. 231(C), pages 876-886.
    14. Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
    15. Ziyad, Ben Ahmed & Yousfi, Mohamed & Vander Heyden, Yvan, 2022. "Effects of growing region and maturity stages on oil yield, fatty acid profile and tocopherols of Pistacia atlantica Desf. fruit and their implications on resulting biodiesel," Renewable Energy, Elsevier, vol. 181(C), pages 167-181.
    16. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    17. Wiranarongkorn, Kunlanan & Im-orb, Karittha & Panpranot, Joongjai & Maréchal, François & Arpornwichanop, Amornchai, 2021. "Exergy and exergoeconomic analyses of sustainable furfural production via reactive distillation," Energy, Elsevier, vol. 226(C).
    18. Ma, Zetai & Xie, Wenping & Xiang, Hanchun & Zhang, Kun & Yang, Mingyang & Deng, Kangyao, 2023. "Thermodynamic analysis of power recovery of marine diesel engine under high exhaust backpressure by additional electrically driven compressor," Energy, Elsevier, vol. 266(C).
    19. Abdelaal, Mohsen M. & Rabee, Basem A. & Hegab, Abdelrahman H., 2013. "Effect of adding oxygen to the intake air on a dual-fuel engine performance, emissions, and knock tendency," Energy, Elsevier, vol. 61(C), pages 612-620.
    20. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5331-:d:623348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.