IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224007187.html
   My bibliography  Save this article

The properties of sustainable aviation fuel II: Laminar flame speed

Author

Listed:
  • Abi Nurazaq, Warit
  • Wang, Wei-Cheng
  • Lin, Jhe-Kai

Abstract

This work reports on the study of flame characteristics and laminar flame speeds (LFS) of sustainable aviation fuel (SAF) and conventional fuels (Jet-A1 and JP-5) premixed with air at elevated pressures. The experimental facilities included the constant volume combustion chamber (CVCC) and used a shadowgraph system to quantify the LFS. The effects of equivalence ratio and ambient pressure on the flame speeds were examined by varying the initial pressure 1, 2, and 3 bar (in addition to 0.1 and 0.5 bar for flame morphology) and the equivalence ratio from 0.8 to 1.8 at 423 K of temperature. The results indicated that JP-5 had the highest LFS value (90.1 cm/s) compared to the other two fuels. Jet-A1 and SAF have the same LFS result, which is less than a 15% difference, excluding the high equivalence ratio and initial pressure. The higher the initial pressure, the lower the LFS for all conditions. The equivalence ratio of 1.2 resulted in the highest LFSs. In addition, in order to understand the laminar flame speed of SAF and its combustion chemical kinetics. Therefore, the sensitivity analysis of SAF was performed. Results indicated that the chain branching reaction (O2 + HOH + O) positively enhanced flame speed as equivalence ratios (φ) increased, while chain propagation reactions, notably O2 + HHO2 (+M), had a negative effect on flame speed, particularly diminishing their influence at higher φ due to limited oxygen availability.

Suggested Citation

  • Abi Nurazaq, Warit & Wang, Wei-Cheng & Lin, Jhe-Kai, 2024. "The properties of sustainable aviation fuel II: Laminar flame speed," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007187
    DOI: 10.1016/j.energy.2024.130946
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Zhiqiang & Zhu, Zhennan & Yu, Wenbin & Liang, Kun & Zuo, Zinong & Xia, Qi & Zeng, Dongjian, 2020. "On the equivalent effect of initial temperature and pressure coupling on the flame speed of methane premixed combustion under dilution," Energy, Elsevier, vol. 207(C).
    2. Choi, Byung Chul & Park, June Sung & Ghoniem, Ahmed F., 2016. "Characteristics of outwardly propagating spherical flames of R134a(C2H2F4)/CH4/O2/N2 mixtures in a constant volume combustion chamber," Energy, Elsevier, vol. 95(C), pages 517-527.
    3. Jerry L. Holechek & Hatim M. E. Geli & Mohammed N. Sawalhah & Raul Valdez, 2022. "A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?," Sustainability, MDPI, vol. 14(8), pages 1-22, April.
    4. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    5. Lin, Jhe-Kai & Nurazaq, Warit Abi & Wang, Wei-Cheng, 2023. "The properties of sustainable aviation fuel I: Spray characteristics," Energy, Elsevier, vol. 283(C).
    6. Askari, Omid & Vien, Kevin & Wang, Ziyu & Sirio, Matteo & Metghalchi, Hameed, 2016. "Exhaust gas recirculation effects on flame structure and laminar burning speeds of H2/CO/air flames at high pressures and temperatures," Applied Energy, Elsevier, vol. 179(C), pages 451-462.
    7. Xu, Cangsu & Wang, Hanyu & Oppong, Francis & Li, Xiaolu & Zhou, Kangquan & Zhou, Wenhua & Wu, Siyuan & Wang, Chongming, 2020. "Determination of laminar burning characteristics of a surrogate for a pyrolysis fuel using constant volume method," Energy, Elsevier, vol. 190(C).
    8. Yang, Ziming & Fei, Chunguang & Li, Yikai & Wang, Dongfang & Sun, Chenhan, 2023. "Experimental study of the effect of physical and chemical properties of alcohols on the spray combustion characteristics of alcohol-diesel blended fuels," Energy, Elsevier, vol. 263(PE).
    9. Chen, Rui-Xin & Wang, Wei-Cheng, 2019. "The production of renewable aviation fuel from waste cooking oil. Part I: Bio-alkane conversion through hydro-processing of oil," Renewable Energy, Elsevier, vol. 135(C), pages 819-835.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanouilidou, Elissavet & Mitkidou, Sophia & Agapiou, Agapios & Kokkinos, Nikolaos C., 2023. "Solid waste biomass as a potential feedstock for producing sustainable aviation fuel: A systematic review," Renewable Energy, Elsevier, vol. 206(C), pages 897-907.
    2. Nair, Aswathy & Velamati, Ratna Kishore & Kumar, Sudarshan, 2016. "Effect OF CO2/N2 dilution on laminar burning velocity of liquid petroleum gas-air mixtures at elevated temperatures," Energy, Elsevier, vol. 100(C), pages 145-153.
    3. Wei Wang & Leonid Melnyk & Oleksandra Kubatko & Bohdan Kovalov & Luc Hens, 2023. "Economic and Technological Efficiency of Renewable Energy Technologies Implementation," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    4. Zhang, Chao & Zhao, Yangsheng & Feng, Zijun & Meng, Qiaorong & Wang, Lei & Lu, Yang, 2023. "Thermal maturity and chemical structure evolution of lump long-flame coal during superheated water vapor–based in situ pyrolysis," Energy, Elsevier, vol. 263(PC).
    5. Shen, Wenkai & Xing, Chang & Liu, Haiqing & Liu, Li & Hu, Qiming & Wu, Guohua & Yang, Yujia & Wu, Shaohua & Qiu, Penghua, 2022. "Exhaust gas recirculation effects on flame heat release rate distribution and dynamic characteristics in a micro gas turbine," Energy, Elsevier, vol. 249(C).
    6. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    7. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).
    8. Feng, Biao & Yang, Zhao & Zhai, Rui, 2017. "Experimental research on the concentration characteristics of R32 and R161′ combustion product HF," Energy, Elsevier, vol. 125(C), pages 671-680.
    9. Hagreaves Kumba & Oludolapo A. Olanrewaju & Ratidzo Pasipamire, 2024. "Integration of Renewable Energy Technologies for Sustainable Development in South Africa: A Focus on Grid-Connected PV Systems," Energies, MDPI, vol. 17(12), pages 1-22, June.
    10. Sun, Zuo-Yu & Li, Guo-Xiu, 2016. "Propagation characteristics of laminar spherical flames within homogeneous hydrogen-air mixtures," Energy, Elsevier, vol. 116(P1), pages 116-127.
    11. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    12. Junqiu Fan & Jing Zhang & Long Yuan & Rujing Yan & Yu He & Weixing Zhao & Nang Nin, 2024. "Deep Low-Carbon Economic Optimization Using CCUS and Two-Stage P2G with Multiple Hydrogen Utilizations for an Integrated Energy System with a High Penetration Level of Renewables," Sustainability, MDPI, vol. 16(13), pages 1-20, July.
    13. Evgeny Chupakhin & Olga Babich & Stanislav Sukhikh & Svetlana Ivanova & Ekaterina Budenkova & Olga Kalashnikova & Alexander Prosekov & Olga Kriger & Vyacheslav Dolganyuk, 2022. "Bioengineering and Molecular Biology of Miscanthus," Energies, MDPI, vol. 15(14), pages 1-14, July.
    14. Shen, Xiaobo & Zhang, Zhenwu & Dou, Zengguo & Cong, Beihua & Xiao, Qiuping & Liu, Haifeng, 2022. "Premixed syngas/air combustion in closed ducts with varied aspect ratios and initial pressures," Energy, Elsevier, vol. 254(PC).
    15. Sinha, Shruti & Sankar Rao, Chinta & Kumar, Abhishankar & Venkata Surya, Dadi & Basak, Tanmay, 2024. "Exploring and understanding the microwave-assisted pyrolysis of waste lignocellulose biomass using gradient boosting regression machine learning model," Renewable Energy, Elsevier, vol. 231(C).
    16. Simona Domazetovska & Vladimir Strezov & Risto V. Filkoski & Tao Kan, 2023. "Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    17. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    18. Guo, Liang & Yu, Changyou & Sun, Wanchen & Zhang, Hao & Cheng, Peng & Yan, Yuying & Lin, Shaodian & Zeng, Wenpeng & Zhu, Genan & Jiang, Mengqi, 2024. "Study on effects of ethylene or acetylene addition on the stability of ammonia laminar diffusion flame by optical diagnostics and chemical kinetics," Applied Energy, Elsevier, vol. 362(C).
    19. Verma, Vikas & Mishra, Ankit & Anand, Mohit & Farooqui, Saleem Akhtar & Sinha, Anil Kumar, 2022. "Catalytic hydrocracking of inedible palm stearin for the production of drop-in aviation fuel and comparison with other inedible oils," Renewable Energy, Elsevier, vol. 199(C), pages 1440-1450.
    20. Grzegorz Pełka & Marta Jach-Nocoń & Marcin Paprocki & Artur Jachimowski & Wojciech Luboń & Adam Nocoń & Mateusz Wygoda & Paweł Wyczesany & Przemysław Pachytel & Tomasz Mirowski, 2023. "Comparison of Emissions and Efficiency of Two Types of Burners When Burning Wood Pellets from Different Suppliers," Energies, MDPI, vol. 16(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224007187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.