IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2538-d755937.html
   My bibliography  Save this article

Systematic Modeling and Analysis of On-Board Vehicle Integrated Novel Hybrid Renewable Energy System with Storage for Electric Vehicles

Author

Listed:
  • Kabir A. Mamun

    (School of Information Technology, Engineering, Mathematics and Physics (STEMP), The University of the South Pacific, Suva, Fiji)

  • F. R. Islam

    (School of Information Technology, Engineering, Mathematics and Physics (STEMP), The University of the South Pacific, Suva, Fiji)

  • R. Haque

    (School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia)

  • Aneesh A. Chand

    (School of Information Technology, Engineering, Mathematics and Physics (STEMP), The University of the South Pacific, Suva, Fiji)

  • Kushal A. Prasad

    (School of Information Technology, Engineering, Mathematics and Physics (STEMP), The University of the South Pacific, Suva, Fiji)

  • Krishneel K. Goundar

    (School of Information Technology, Engineering, Mathematics and Physics (STEMP), The University of the South Pacific, Suva, Fiji)

  • Krishneel Prakash

    (School of Information Technology, Engineering, Mathematics and Physics (STEMP), The University of the South Pacific, Suva, Fiji
    School of Engineering and Information Technology, The University of New South Wales, Sydney, NSW 2052, Australia)

  • Sidharth Maharaj

    (School of Information Technology, Engineering, Mathematics and Physics (STEMP), The University of the South Pacific, Suva, Fiji)

Abstract

The automobile industry and technology are putting a great significance in improving vehicles to become more fuel economical, but with incremental costs relative to conventional vehicle technologies; these new vehicles are electric vehicles (EV), plug-in hybrid electric vehicles (PHEV), and hybrid electric vehicles (HEV). However, their significant capabilities to reduce petroleum consumption and achieve efficiency over their life cycles offer economic benefits for customers, industry, carmakers, and policymakers. In this paper, an HEV concept based on renewable energy resources (RERs) is proposed. The proposed HEV design utilizes solar PV energy, wind energy, fuel cell, and a supercapacitor (PV + WE + FC + SC) which generates electrical energy via a proton exchange membrane (PEM) and an SC to cater for strong torque requirements. The vehicle incorporates a battery pack in conjunction with an SC for the power demands and an FC as the backup energy supply. An alternator connected to turbine blades runs by wind energy while the car is moving forward, which produces electricity through the alternator to charge the battery. The design aims to ensure zero carbon emission and improved energy efficiency, is lightweight, and incorporates in-wheel motors to eliminate the mechanical transmissions. Modeling and simulation were carried out for each subsystem using MATLAB ® and Simulink ® packages. ANSYS Fluent simulation was used to analyze wind energy. The standard analysis, e.g., pressure, velocity, and vector contour, were also considered while designing the final model. To regulate the power supply and demand, the selection of energy sources was controlled by a rule-based supervisory controller following a logical sequence that prioritizes energy sources with the SC as a source in-vehicle stop-and-go situations while the battery acts as the primary source, FC as a backup supply, and wind and solar power to recharge the battery. Solar charging is switched on automatically once the vehicle is parked, and the controller controls the energy flow from the alternator during that period.

Suggested Citation

  • Kabir A. Mamun & F. R. Islam & R. Haque & Aneesh A. Chand & Kushal A. Prasad & Krishneel K. Goundar & Krishneel Prakash & Sidharth Maharaj, 2022. "Systematic Modeling and Analysis of On-Board Vehicle Integrated Novel Hybrid Renewable Energy System with Storage for Electric Vehicles," Sustainability, MDPI, vol. 14(5), pages 1-33, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2538-:d:755937
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2538/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2538/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roham Torabi & Álvaro Gomes & F. Morgado-Dias, 2021. "Energy Transition on Islands with the Presence of Electric Vehicles: A Case Study for Porto Santo," Energies, MDPI, vol. 14(12), pages 1-24, June.
    2. Schulz, Felix & Rode, Johannes, 2022. "Public charging infrastructure and electric vehicles in Norway," Energy Policy, Elsevier, vol. 160(C).
    3. Pierpaolo Polverino & Ivan Arsie & Cesare Pianese, 2021. "Optimal Energy Management for Hybrid Electric Vehicles Based on Dynamic Programming and Receding Horizon," Energies, MDPI, vol. 14(12), pages 1-11, June.
    4. Zou, Runnan & Fan, Likang & Dong, Yanrui & Zheng, Siyu & Hu, Chenxing, 2021. "DQL energy management: An online-updated algorithm and its application in fix-line hybrid electric vehicle," Energy, Elsevier, vol. 225(C).
    5. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    6. Wang, Huan & Chen, Wenying, 2019. "Modeling of energy transformation pathways under current policies, NDCs and enhanced NDCs to achieve 2-degree target," Applied Energy, Elsevier, vol. 250(C), pages 549-557.
    7. Yang, Chen, 2022. "Running battery electric vehicles with extended range: Coupling cost and energy analysis," Applied Energy, Elsevier, vol. 306(PB).
    8. Abel Rodrigues & João Carlos Bordado & Rui Galhano dos Santos, 2017. "Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways," Energies, MDPI, vol. 10(11), pages 1-36, November.
    9. Nallapaneni Manoj Kumar & Shauhrat S. Chopra & Aneesh A. Chand & Rajvikram Madurai Elavarasan & G.M. Shafiullah, 2020. "Hybrid Renewable Energy Microgrid for a Residential Community: A Techno-Economic and Environmental Perspective in the Context of the SDG7," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    10. Kendall, Alissa & Ambrose, Hanjiro & Maroney, Erik & Deng, Huijing, 2018. "Program for Vehicle Regulatory Reform: Assessing Life Cycle-Based Greenhouse Gas Standards," Institute of Transportation Studies, Working Paper Series qt49g4h212, Institute of Transportation Studies, UC Davis.
    11. Salsabil Gherairi, 2019. "Hybrid Electric Vehicle: Design and Control of a Hybrid System (Fuel Cell/Battery/Ultra-Capacitor) Supplied by Hydrogen," Energies, MDPI, vol. 12(7), pages 1-19, April.
    12. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, vol. 12(20), pages 1-54, October.
    13. Fang, Yingkai & Asche, Frank & Novan, Kevin, 2018. "The costs of charging Plug-in Electric Vehicles (PEVs): Within day variation in emissions and electricity prices," Energy Economics, Elsevier, vol. 69(C), pages 196-203.
    14. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    16. Wangyi Mo & Chao Yang & Xin Chen & Kangjie Lin & Shuaiqi Duan, 2019. "Optimal Charging Navigation Strategy Design for Rapid Charging Electric Vehicles," Energies, MDPI, vol. 12(6), pages 1-18, March.
    17. K. Prakash & F. R. Islam & K. A. Mamun & H. R. Pota, 2020. "Configurations of Aromatic Networks for Power Distribution System," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    18. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    19. Onat, Nuri Cihat & Kucukvar, Murat & Aboushaqrah, Nour N.M. & Jabbar, Rateb, 2019. "How sustainable is electric mobility? A comprehensive sustainability assessment approach for the case of Qatar," Applied Energy, Elsevier, vol. 250(C), pages 461-477.
    20. Savvas Piperidis & Iason Chrysomallis & Stavros Georgakopoulos & Nikolaos Ghionis & Lefteris Doitsidis & Nikos Tsourveloudis, 2021. "A ROS-Based Energy Management System for a Prototype Fuel Cell Hybrid Vehicle," Energies, MDPI, vol. 14(7), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Mengxu Qi, 2023. "Mathematical Modeling of the State of the Battery of Cargo Electric Vehicles," Mathematics, MDPI, vol. 11(3), pages 1-19, January.
    2. Tiwari, Aviral Kumar & Abakah, Emmanuel Joel Aikins & Doğan, Buhari & Ghosh, Sudeshna, 2023. "Sustainable debt and gas markets: A new look using the time-varying wavelet-windowed cross-correlation approach," Energy Economics, Elsevier, vol. 120(C).
    3. Stavros Poniris & Anastasios I. Dounis, 2022. "Electric Vehicle Charging Schedules in Workplace Parking Lots Based on Evolutionary Optimization Algorithm," Energies, MDPI, vol. 16(1), pages 1-16, December.
    4. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    5. Gao, Yan & Jiang, Chen & Yu, Dahai & Ahmad, Maiwand, 2023. "A novel electric differential and synchronization control method for 4WD/4WS electric vehicles based on fictitious master," Energy, Elsevier, vol. 274(C).
    6. Hyeon Woo & Yongju Son & Jintae Cho & Sungyun Choi, 2022. "Stochastic Second-Order Conic Programming for Optimal Sizing of Distributed Generator Units and Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 14(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    2. Prakash, K. & Ali, M. & Hossain, M A & Kumar, Nallapaneni Manoj & Islam, M.R. & Macana, C.A. & Chopra, Shauhrat S. & Pota, H.R., 2022. "Planning battery energy storage system in line with grid support parameters enables circular economy aligned ancillary services in low voltage networks," Renewable Energy, Elsevier, vol. 201(P1), pages 802-820.
    3. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    4. Oyewo, Ayobami S. & Aghahosseini, Arman & Movsessian, Maria M. & Breyer, Christian, 2024. "A novel geothermal-PV led energy system analysis on the case of the central American countries Guatemala, Honduras, and Costa Rica," Renewable Energy, Elsevier, vol. 221(C).
    5. Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
    6. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    7. Alfredo Višković & Vladimir Franki & Angela Bašić-Šiško, 2022. "City-Level Transition to Low-Carbon Economy," Energies, MDPI, vol. 15(5), pages 1-24, February.
    8. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    9. Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.
    10. Gallaher, Adam & Graziano, Marcello & Fiaschetti, Maurizio, 2021. "Legacy and shockwaves: A spatial analysis of strengthening resilience of the power grid in Connecticut," Energy Policy, Elsevier, vol. 159(C).
    11. Li, Tianyu & Liu, Huiying & Wang, Hui & Yao, Yongming, 2020. "Hierarchical predictive control-based economic energy management for fuel cell hybrid construction vehicles," Energy, Elsevier, vol. 198(C).
    12. Liu Lu & Wei Wei, 2023. "Influence of Public Sports Services on Residents’ Mental Health at Communities Level: New Insights from China," IJERPH, MDPI, vol. 20(2), pages 1-14, January.
    13. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Caragliu, Andrea & Graziano, Marcello, 2022. "The spatial dimension of energy transition policies, practices and technologies," Energy Policy, Elsevier, vol. 168(C).
    16. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    17. Łukasz Jarosław Kozar & Robert Matusiak & Marta Paduszyńska & Adam Sulich, 2022. "Green Jobs in the EU Renewable Energy Sector: Quantile Regression Approach," Energies, MDPI, vol. 15(18), pages 1-21, September.
    18. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    19. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    20. Daniel Rasbash & Kevin Joseph Dillman & Jukka Heinonen & Eyjólfur Ingi Ásgeirsson, 2023. "A National and Regional Greenhouse Gas Breakeven Assessment of EVs across North America," Sustainability, MDPI, vol. 15(3), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2538-:d:755937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.