IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i8p2784-d790994.html
   My bibliography  Save this article

Experimental Assessment of the Thermal Conductivity of Basalt Fibres at High Temperatures

Author

Listed:
  • Yuri Vankov

    (Institute to Heart Power Engineering, Kazan State Power Engineering University, 420066 Kazan, Russia)

  • Elvira Bazukova

    (Institute to Heart Power Engineering, Kazan State Power Engineering University, 420066 Kazan, Russia)

  • Dmitry Emelyanov

    (Chemical Department, Kazan (Volga Region) Federal University, 420008 Kazan, Russia)

  • Alexander Fedyukhin

    (Energy Efficiency and Hydrogen Technology Department, Power Engineering Institute, National Research University Moscow, 111250 Moscow, Russia)

  • Olga Afanaseva

    (Institute of Energy, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

  • Irina Akhmetova

    (Institute of Digital Technologies and Economics, Kazan State Power Engineering University, 420066 Kazan, Russia)

  • Umberto Berardi

    (Department of Architectural Science, Ryerson University, Toronto, ON M5B 2K3, Canada)

Abstract

This paper investigates fibrous thermal insulation materials of various densities to assess the change in their thermophysical properties at high temperatures. The thermal conductivity of fibrous thermal insulation materials is discussed as a function of the temperature in the range from 50 °C to 500 °C. It is shown that the thermal insulating properties depend not only on the physical properties of the material (e.g., density or diameter of fibres), but also on the geometric parameters of the structure and on the orientation of the fibres. The influence of high temperatures on the mass change of fibrous materials associated with the burnout of synthetic binders is shown. These features should be taken into account during the design of thermal insulation operating at high temperatures to provide the optimal selection of the material and to guarantee the stability of their thermal properties.

Suggested Citation

  • Yuri Vankov & Elvira Bazukova & Dmitry Emelyanov & Alexander Fedyukhin & Olga Afanaseva & Irina Akhmetova & Umberto Berardi, 2022. "Experimental Assessment of the Thermal Conductivity of Basalt Fibres at High Temperatures," Energies, MDPI, vol. 15(8), pages 1-11, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2784-:d:790994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/8/2784/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/8/2784/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Lidén & Bijan Adl-Zarrabi & Carl-Eric Hagentoft, 2021. "Diagnostic Protocol for Thermal Performance of District Heating Pipes in Operation. Part 2: Estimation of Present Thermal Conductivity in Aged Pipe Insulation," Energies, MDPI, vol. 14(17), pages 1-15, August.
    2. Dorota Anna Krawczyk & Tomasz Janusz Teleszewski, 2019. "Reduction of Heat Losses in a Pre-Insulated Network Located in Central Poland by Lowering the Operating Temperature of the Water and the Use of Egg-shaped Thermal Insulation: A Case Study," Energies, MDPI, vol. 12(11), pages 1-12, June.
    3. Hamidreza Behi & Mohammadreza Behi & Ali Ghanbarpour & Danial Karimi & Aryan Azad & Morteza Ghanbarpour & Masud Behnia, 2021. "Enhancement of the Thermal Energy Storage Using Heat-Pipe-Assisted Phase Change Material," Energies, MDPI, vol. 14(19), pages 1-19, September.
    4. Berardi, Umberto, 2019. "The impact of aging and environmental conditions on the effective thermal conductivity of several foam materials," Energy, Elsevier, vol. 182(C), pages 777-794.
    5. Tomasz Janusz Teleszewski & Dorota Anna Krawczyk & Antonio Rodero, 2019. "Reduction of Heat Losses Using Quadruple Heating Pre-Insulated Networks: A Case Study," Energies, MDPI, vol. 12(24), pages 1-12, December.
    6. Jung Wook Park & Ohk Kun Lim & Woo Jun You, 2020. "Analysis on the Fire Growth Rate Index Considering of Scale Factor, Volume Fraction, and Ignition Heat Source for Polyethylene Foam Pipe Insulation," Energies, MDPI, vol. 13(14), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander V. Fedyukhin & Konstantin V. Strogonov & Olga V. Soloveva & Sergei A. Solovev & Irina G. Akhmetova & Umberto Berardi & Mark D. Zaitsev & Daniil V. Grigorev, 2022. "Aerogel Product Applications for High-Temperature Thermal Insulation," Energies, MDPI, vol. 15(20), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Mengke & Zhang, Shujie & Fu, Lisong & Cao, Guoquan & Wang, Rui, 2023. "Reducing heat losses from aging district heating pipes by using cured-in-place pipe liners," Energy, Elsevier, vol. 273(C).
    2. Libor Kudela & Radomír Chýlek & Jiří Pospíšil, 2020. "Efficient Integration of Machine Learning into District Heating Predictive Models," Energies, MDPI, vol. 13(23), pages 1-12, December.
    3. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    4. Jakubek, Dariusz & Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Sułowicz, Maciej & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "Mathematical modelling and model validation of the heat losses in district heating networks," Energy, Elsevier, vol. 267(C).
    5. Cai, Shanshan & Guo, Haijin & Zhang, Boxiong & Xu, Guowen & Li, Kun & Xia, Lizhi, 2020. "Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation," Energy, Elsevier, vol. 196(C).
    6. Imran & Naeem Iqbal & Shabir Ahmad & Do Hyeun Kim, 2021. "Towards Mountain Fire Safety Using Fire Spread Predictive Analytics and Mountain Fire Containment in IoT Environment," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
    7. Hongzhe Zhang & Fang Ye & Hang Guo & Xiaoke Yan, 2021. "Sodium-Potassium Alloy Heat Pipe under Geyser Boiling Experimental Study: Heat Transfer Analysis," Energies, MDPI, vol. 14(22), pages 1-15, November.
    8. Alexander V. Fedyukhin & Konstantin V. Strogonov & Olga V. Soloveva & Sergei A. Solovev & Irina G. Akhmetova & Umberto Berardi & Mark D. Zaitsev & Daniil V. Grigorev, 2022. "Aerogel Product Applications for High-Temperature Thermal Insulation," Energies, MDPI, vol. 15(20), pages 1-15, October.
    9. Guo, Haijin & Cai, Shanshan & Li, Kun & Liu, Zhongming & Xia, Lizhi & Xiong, Jiazhuang, 2020. "Simultaneous test and visual identification of heat and moisture transport in several types of thermal insulation," Energy, Elsevier, vol. 197(C).
    10. Hamidreza Behi & Theodoros Kalogiannis & Mahesh Suresh Patil & Joeri Van Mierlo & Maitane Berecibar, 2021. "A New Concept of Air Cooling and Heat Pipe for Electric Vehicles in Fast Discharging," Energies, MDPI, vol. 14(20), pages 1-15, October.
    11. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    12. Ahmad Taki & Anastasiya Zakharanka, 2023. "The Effect of Degradation on Cold Climate Building Energy Performance: A Comparison with Hot Climate Buildings," Sustainability, MDPI, vol. 15(8), pages 1-38, April.
    13. Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
    14. Yang Xu & Hang Yin & Chen He & Yong Wei & Ming Cui & Zhang-Jing Zheng, 2022. "Structure Optimization of Longitudinal Rectangular Fins to Improve the Melting Performance of Phase Change Materials through Genetic Algorithm," Energies, MDPI, vol. 15(24), pages 1-21, December.
    15. Sara Dias & António Tadeu & Amílcar Ramalho & Michael Brett & Filipe Pedro, 2022. "Thermal and Mechanical Characterisation of Sandwich Core Materials for Climatic Chamber Shells Subjected to High Temperatures," Energies, MDPI, vol. 15(6), pages 1-18, March.
    16. Martinka Jozef & Rantuch Peter & Wachter Igor & Štefko Tomáš & Trčka Martin & Hladová Martina & Nečas Aleš & Sulová Janka, 2021. "Fire Growth Rate Index as a Key Fire Characteristic of Electrical Cables," Research Papers Faculty of Materials Science and Technology Slovak University of Technology, Sciendo, vol. 29(48), pages 81-90, June.
    17. Danial Karimi & Hamidreza Behi & Joeri Van Mierlo & Maitane Berecibar, 2022. "An Experimental Study on Thermal Performance of Graphite-Based Phase-Change Materials for High-Power Batteries," Energies, MDPI, vol. 15(7), pages 1-13, March.
    18. Yurou Tong & Hui Yang & Li Bao & Baoxia Guo & Yanzhuo Shi & Congcong Wang, 2022. "Analysis of Thermal Insulation Thickness for a Container House in the Yanqing Zone of the Beijing 2022 Olympic and Paralympic Winter Games," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    19. Tomasz Janusz Teleszewski & Dorota Anna Krawczyk & Antonio Rodero, 2019. "Reduction of Heat Losses Using Quadruple Heating Pre-Insulated Networks: A Case Study," Energies, MDPI, vol. 12(24), pages 1-12, December.
    20. Silvia Ravelli, 2022. "District Heating and Cooling towards Net Zero," Energies, MDPI, vol. 15(16), pages 1-2, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:8:p:2784-:d:790994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.