A Short-Term Residential Load Forecasting Model Based on LSTM Recurrent Neural Network Considering Weather Features
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ghofrani, M. & Ghayekhloo, M. & Arabali, A. & Ghayekhloo, A., 2015. "A hybrid short-term load forecasting with a new input selection framework," Energy, Elsevier, vol. 81(C), pages 777-786.
- Yixing Wang & Meiqin Liu & Zhejing Bao & Senlin Zhang, 2018. "Short-Term Load Forecasting with Multi-Source Data Using Gated Recurrent Unit Neural Networks," Energies, MDPI, vol. 11(5), pages 1-19, May.
- Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
- Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A High Precision Artificial Neural Networks Model for Short-Term Energy Load Forecasting," Energies, MDPI, vol. 11(1), pages 1-13, January.
- Beccali, M. & Cellura, M. & Lo Brano, V. & Marvuglia, A., 2008. "Short-term prediction of household electricity consumption: Assessing weather sensitivity in a Mediterranean area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2040-2065, October.
- Alexis Gerossier & Robin Girard & Alexis Bocquet & George Kariniotakis, 2018. "Robust Day-Ahead Forecasting of Household Electricity Demand and Operational Challenges," Energies, MDPI, vol. 11(12), pages 1-18, December.
- Liu, Nian & Tang, Qingfeng & Zhang, Jianhua & Fan, Wei & Liu, Jie, 2014. "A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids," Applied Energy, Elsevier, vol. 129(C), pages 336-345.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hao Ma & Peng Yang & Fei Wang & Xiaotian Wang & Di Yang & Bo Feng, 2023. "Short-Term Heavy Overload Forecasting of Public Transformers Based on Combined LSTM-XGBoost Model," Energies, MDPI, vol. 16(3), pages 1-16, February.
- Zheng Wan & Hui Li, 2023. "Short-Term Power Load Forecasting Based on Feature Filtering and Error Compensation under Imbalanced Samples," Energies, MDPI, vol. 16(10), pages 1-22, May.
- Donghun Lee & Jongeun Kim & Suhee Kim & Kwanho Kim, 2023. "Comparison Analysis for Electricity Consumption Prediction of Multiple Campus Buildings Using Deep Recurrent Neural Networks," Energies, MDPI, vol. 16(24), pages 1-13, December.
- Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
- Jiarong Shi & Zhiteng Wang, 2022. "A Hybrid Forecast Model for Household Electric Power by Fusing Landmark-Based Spectral Clustering and Deep Learning," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
- Aamer A. Shah & Almani A. Aftab & Xueshan Han & Mazhar Hussain Baloch & Mohamed Shaik Honnurvali & Sohaib Tahir Chauhdary, 2023. "Prediction Error-Based Power Forecasting of Wind Energy System Using Hybrid WT–ROPSO–NARMAX Model," Energies, MDPI, vol. 16(7), pages 1-15, April.
- Akash Kumar & Bing Yan & Ace Bilton, 2022. "Machine Learning-Based Load Forecasting for Nanogrid Peak Load Cost Reduction," Energies, MDPI, vol. 15(18), pages 1-23, September.
- Ruixiang Zhang & Ziyu Zhu & Meng Yuan & Yihan Guo & Jie Song & Xuanxuan Shi & Yu Wang & Yaojie Sun, 2023. "Regional Residential Short-Term Load-Interval Forecasting Based on SSA-LSTM and Load Consumption Consistency Analysis," Energies, MDPI, vol. 16(24), pages 1-17, December.
- Hyung-Chul Jo & Hyang-A Park & Soon-Young Kwon & Kyeong-Hee Cho, 2024. "Home Energy Management Systems (HEMSs) with Optimal Energy Management of Home Appliances Using IoT," Energies, MDPI, vol. 17(12), pages 1-15, June.
- Anis ur Rehman & Muhammad Ali & Sheeraz Iqbal & Aqib Shafiq & Nasim Ullah & Sattam Al Otaibi, 2022. "Artificial Intelligence-Based Control and Coordination of Multiple PV Inverters for Reactive Power/Voltage Control of Power Distribution Networks," Energies, MDPI, vol. 15(17), pages 1-13, August.
- Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Deyun & Yue, Chenqiang & ElAmraoui, Adnen, 2021. "Multi-step-ahead electricity load forecasting using a novel hybrid architecture with decomposition-based error correction strategy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
- Wei-Chiang Hong & Guo-Feng Fan, 2019. "Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting," Energies, MDPI, vol. 12(6), pages 1-16, March.
- Chujie Tian & Jian Ma & Chunhong Zhang & Panpan Zhan, 2018. "A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network," Energies, MDPI, vol. 11(12), pages 1-13, December.
- Yuanyuan Zhou & Min Zhou & Qing Xia & Wei-Chiang Hong, 2019. "Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory," Mathematics, MDPI, vol. 7(12), pages 1-23, December.
- Dieudonné, Nzoko Tayo & Armel, Talla Konchou Franck & Hermann, Djeudjo Temene & Vidal, Aloyem Kaze Claude & René, Tchinda, 2023. "Optimization of Short-Term Forecast of Electric Power Demand in the city of Yaoundé-Cameroon by a hybrid model based on the combination of neural networks and econometric methods from a designed energ," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).
- Zhaorui Meng & Xianze Xu, 2019. "A Hybrid Short-Term Load Forecasting Framework with an Attention-Based Encoder–Decoder Network Based on Seasonal and Trend Adjustment," Energies, MDPI, vol. 12(24), pages 1-14, December.
- Shangfu Wei & Xiaoqing Bai, 2022. "Multi-Step Short-Term Building Energy Consumption Forecasting Based on Singular Spectrum Analysis and Hybrid Neural Network," Energies, MDPI, vol. 15(5), pages 1-21, February.
- Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
- Fan, Guo-Feng & Peng, Li-Ling & Hong, Wei-Chiang, 2018. "Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model," Applied Energy, Elsevier, vol. 224(C), pages 13-33.
- Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
- He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
- Ghimire, Sujan & Nguyen-Huy, Thong & AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2023. "A novel approach based on integration of convolutional neural networks and echo state network for daily electricity demand prediction," Energy, Elsevier, vol. 275(C).
- Seon Hyeog Kim & Gyul Lee & Gu-Young Kwon & Do-In Kim & Yong-June Shin, 2018. "Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting," Energies, MDPI, vol. 11(12), pages 1-17, December.
- Lusis, Peter & Khalilpour, Kaveh Rajab & Andrew, Lachlan & Liebman, Ariel, 2017. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity," Applied Energy, Elsevier, vol. 205(C), pages 654-669.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
More about this item
Keywords
short-term load forecasting; recurrent neural network; residential load forecasting; meteorological data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2737-:d:551967. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.