IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i1p291-d716189.html
   My bibliography  Save this article

Residential Short-Term Load Forecasting during Atypical Consumption Behavior

Author

Listed:
  • Cristina Hora

    (Faculty of Energy Engineering and Industrial Management (ROMANIA), University of Oradea, 410087 Oradea, Romania)

  • Florin Ciprian Dan

    (Faculty of Energy Engineering and Industrial Management (ROMANIA), University of Oradea, 410087 Oradea, Romania)

  • Gabriel Bendea

    (Faculty of Energy Engineering and Industrial Management (ROMANIA), University of Oradea, 410087 Oradea, Romania)

  • Calin Secui

    (Faculty of Energy Engineering and Industrial Management (ROMANIA), University of Oradea, 410087 Oradea, Romania)

Abstract

Short-term load forecasting (STLF) is a fundamental tool for power networks’ proper functionality. As large consumers need to provide their own STLF, the residential consumers are the ones that need to be monitored and forecasted by the power network. There is a huge bibliography on all types of residential load forecast in which researchers have struggled to reach smaller forecasting errors. Regarding atypical consumption, we could see few titles before the coronavirus pandemic (COVID-19) restrictions, and afterwards all titles referred to the case of COVID-19. The purpose of this study was to identify, among the most used STLF methods—linear regression (LR), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN)—the one that had the best response in atypical consumption behavior and to state the best action to be taken during atypical consumption behavior on the residential side. The original contribution of this paper regards the forecasting of loads that do not have reference historic data. As the most recent available scenario, we evaluated our forecast with respect to the database of consumption behavior altered by different COVID-19 pandemic restrictions and the cause and effect of the factors influencing residential consumption, both in urban and rural areas. To estimate and validate the results of the forecasts, multiyear hourly residential consumption databases were used. The main findings were related to the huge forecasting errors that were generated, three times higher, if the forecasting algorithm was not set up for atypical consumption. Among the forecasting algorithms deployed, the best results were generated by ANN, followed by ARIMA and LR. We concluded that the forecasting methods deployed retained their hierarchy and accuracy in forecasting error during atypical consumer behavior, similar to forecasting in normal conditions, if a trigger/alarm mechanism was in place and there was sufficient time to adapt/deploy the forecasting algorithm. All results are meant to be used as best practices during power load uncertainty and atypical consumption behavior.

Suggested Citation

  • Cristina Hora & Florin Ciprian Dan & Gabriel Bendea & Calin Secui, 2022. "Residential Short-Term Load Forecasting during Atypical Consumption Behavior," Energies, MDPI, vol. 15(1), pages 1-15, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:291-:d:716189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/291/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/291/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feras Alasali & Khaled Nusair & Lina Alhmoud & Eyad Zarour, 2021. "Impact of the COVID-19 Pandemic on Electricity Demand and Load Forecasting," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    2. Andrei M. Tudose & Irina I. Picioroaga & Dorian O. Sidea & Constantin Bulac & Valentin A. Boicea, 2021. "Short-Term Load Forecasting Using Convolutional Neural Networks in COVID-19 Context: The Romanian Case Study," Energies, MDPI, vol. 14(13), pages 1-19, July.
    3. David Kozak & Scott Holladay & Gregory E. Fasshauer, 2019. "Intraday Load Forecasts with Uncertainty," Energies, MDPI, vol. 12(10), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Man-Wen Tian & Khalid Alattas & Fayez El-Sousy & Abdullah Alanazi & Ardashir Mohammadzadeh & Jafar Tavoosi & Saleh Mobayen & Paweł Skruch, 2022. "A New Short Term Electrical Load Forecasting by Type-2 Fuzzy Neural Networks," Energies, MDPI, vol. 15(9), pages 1-14, April.
    2. Ntumba Marc-Alain Mutombo & Bubele Papy Numbi, 2022. "Development of a Linear Regression Model Based on the Most Influential Predictors for a Research Office Cooling Load," Energies, MDPI, vol. 15(14), pages 1-20, July.
    3. Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
    2. Neilson Luniere Vilaça & Marly Guimarães Fernandes Costa & Cicero Ferreira Fernandes Costa Filho, 2023. "A Hybrid Deep Neural Network Architecture for Day-Ahead Electricity Forecasting: Post-COVID Paradigm," Energies, MDPI, vol. 16(8), pages 1-14, April.
    3. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    4. Norman Maswanganyi & Caston Sigauke & Edmore Ranganai, 2021. "Prediction of Extreme Conditional Quantiles of Electricity Demand: An Application Using South African Data," Energies, MDPI, vol. 14(20), pages 1-21, October.
    5. Taorong Jia & Lixiao Yao & Guoqing Yang & Qi He, 2022. "A Short-Term Power Load Forecasting Method of Based on the CEEMDAN-MVO-GRU," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    6. Feras Alasali & Husam Foudeh & Esraa Mousa Ali & Khaled Nusair & William Holderbaum, 2021. "Forecasting and Modelling the Uncertainty of Low Voltage Network Demand and the Effect of Renewable Energy Sources," Energies, MDPI, vol. 14(8), pages 1-31, April.
    7. Gang Chen & Qingchang Hu & Jin Wang & Xu Wang & Yuyu Zhu, 2023. "Machine-Learning-Based Electric Power Forecasting," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
    8. S. M. Mahfuz Alam & Ahmed Abuhussein & Mohammad Ashraf Hossain Sadi, 2023. "Month-Wise Investigation on Residential Load Consumption Impact during COVID-19 Period on Distribution Transformer and Practical Mitigation Solution," Energies, MDPI, vol. 16(5), pages 1-24, February.
    9. Sajawal ur Rehman Khan & Israa Adil Hayder & Muhammad Asif Habib & Mudassar Ahmad & Syed Muhammad Mohsin & Farrukh Aslam Khan & Kainat Mustafa, 2022. "Enhanced Machine-Learning Techniques for Medium-Term and Short-Term Electric-Load Forecasting in Smart Grids," Energies, MDPI, vol. 16(1), pages 1-16, December.
    10. Gianfranco Chicco & Andrea Mazza & Salvatore Musumeci & Enrico Pons & Angela Russo, 2022. "Editorial for the Special Issue “Verifying the Targets—Selected Papers from the 55th International Universities Power Engineering Conference (UPEC 2020)”," Energies, MDPI, vol. 15(15), pages 1-8, August.
    11. Iuri C. Figueiró & Alzenira R. Abaide & Nelson K. Neto & Leonardo N. F. Silva & Laura L. C. Santos, 2023. "Bottom-Up Short-Term Load Forecasting Considering Macro-Region and Weighting by Meteorological Region," Energies, MDPI, vol. 16(19), pages 1-21, September.
    12. Marcin Malec & Grzegorz Kinelski & Marzena Czarnecka, 2021. "The Impact of COVID-19 on Electricity Demand Profiles: A Case Study of Selected Business Clients in Poland," Energies, MDPI, vol. 14(17), pages 1-17, August.
    13. Smruti Manjunath & Madhura Yeligeti & Maria Fyta & Jannik Haas & Hans-Christian Gils, 2021. "Impact of COVID-19 on Electricity Demand: Deriving Minimum States of System Health for Studies on Resilience," Data, MDPI, vol. 6(7), pages 1-20, July.
    14. Ra ed Nahar Myyas & Mohammad R. Almajali, 2022. "Effect of COVID-19 on Energy Sector in Jordan," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 20-29, March.
    15. Yasunobu Wakashiro, 2022. "Causal impact of severe events on electricity demand: The case of COVID-19 in Japan," Papers 2206.02122, arXiv.org.
    16. Zhiang Zhang & Ali Cheshmehzangi & Saeid Pourroostaei Ardakani, 2021. "A Data-Driven Clustering Analysis for the Impact of COVID-19 on the Electricity Consumption Pattern of Zhejiang Province, China," Energies, MDPI, vol. 14(23), pages 1-22, December.
    17. Tan Ngoc Dinh & Gokul Sidarth Thirunavukkarasu & Mehdi Seyedmahmoudian & Saad Mekhilef & Alex Stojcevski, 2023. "Energy Consumption Forecasting in Commercial Buildings during the COVID-19 Pandemic: A Multivariate Multilayered Long-Short Term Memory Time-Series Model with Knowledge Injection," Sustainability, MDPI, vol. 15(17), pages 1-18, August.
    18. Umar Javed & Khalid Ijaz & Muhammad Jawad & Ejaz A. Ansari & Noman Shabbir & Lauri Kütt & Oleksandr Husev, 2021. "Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis," Energies, MDPI, vol. 14(17), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:1:p:291-:d:716189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.