Application of the Nacelle Transfer Function by a Nacelle-Mounted Light Detection and Ranging System to Wind Turbine Power Performance Measurement
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Charlotte Bay Hasager & Nicolai Gayle Nygaard & Patrick J. H. Volker & Ioanna Karagali & Søren Juhl Andersen & Jake Badger, 2017. "Wind Farm Wake: The 2016 Horns Rev Photo Case," Energies, MDPI, vol. 10(3), pages 1-24, March.
- Xiaojun Shen & Chongchen Zhou & Guojie Li & Xuejiao Fu & Tek Tjing Lie, 2018. "Overview of Wind Parameters Sensing Methods and Framework of a Novel MCSPV Recombination Sensing Method for Wind Turbines," Energies, MDPI, vol. 11(7), pages 1-23, July.
- Oliver Probst & Diego Cárdenas, 2010. "State of the Art and Trends in Wind Resource Assessment," Energies, MDPI, vol. 3(6), pages 1-55, June.
- Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
- Shin, Dongheon & Ko, Kyungnam, 2017. "Comparative analysis of degradation rates for inland and seaside wind turbines in compliance with the International Electrotechnical Commission standard," Energy, Elsevier, vol. 118(C), pages 1180-1186.
- Soledad Le Clainche & Luis S. Lorente & José M. Vega, 2018. "Wind Predictions Upstream Wind Turbines from a LiDAR Database," Energies, MDPI, vol. 11(3), pages 1-15, March.
- Ali Marjan & Mahmood Shafiee, 2018. "Evaluation of Wind Resources and the Effect of Market Price Components on Wind-Farm Income: A Case Study of Ørland in Norway," Energies, MDPI, vol. 11(11), pages 1-21, October.
- Shu, Z.R. & Li, Q.S. & He, Y.C. & Chan, P.W., 2016. "Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications," Applied Energy, Elsevier, vol. 169(C), pages 150-163.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yanhui Qiao & Yongqian Liu & Yang Chen & Shuang Han & Luo Wang, 2022. "Power Generation Performance Indicators of Wind Farms Including the Influence of Wind Energy Resource Differences," Energies, MDPI, vol. 15(5), pages 1-25, February.
- Xiaodong Wang & Yunong Liu & Luyao Wang & Lin Ding & Hui Hu, 2019. "Numerical Study of Nacelle Wind Speed Characteristics of a Horizontal Axis Wind Turbine under Time-Varying Flow," Energies, MDPI, vol. 12(20), pages 1-19, October.
- Shin, Dongheon & Ko, Kyungnam, 2022. "Experimental study on application of nacelle-mounted LiDAR for analyzing wind turbine wake effects by distance," Energy, Elsevier, vol. 243(C).
- Saint-Drenan, Yves-Marie & Besseau, Romain & Jansen, Malte & Staffell, Iain & Troccoli, Alberto & Dubus, Laurent & Schmidt, Johannes & Gruber, Katharina & Simões, Sofia G. & Heier, Siegfried, 2020. "A parametric model for wind turbine power curves incorporating environmental conditions," Renewable Energy, Elsevier, vol. 157(C), pages 754-768.
- Jing Zhang & Jixing Chen & Hao Liu & Yining Chen & Jingwen Yang & Zongtao Yuan & Qingan Li, 2023. "Applicability of WorldCover in Wind Power Engineering: Application Research of Coupled Wake Model Based on Practical Project," Energies, MDPI, vol. 16(5), pages 1-16, February.
- Mohsen Vahidzadeh & Corey D. Markfort, 2020. "An Induction Curve Model for Prediction of Power Output of Wind Turbines in Complex Conditions," Energies, MDPI, vol. 13(4), pages 1-23, February.
- Mohsen Vahidzadeh & Corey D. Markfort, 2019. "Modified Power Curves for Prediction of Power Output of Wind Farms," Energies, MDPI, vol. 12(9), pages 1-19, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
- Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2021. "Assessment of long-term offshore wind energy potential in the south and southeast coasts of China based on a 55-year dataset," Energy, Elsevier, vol. 224(C).
- He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
- He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- He, Junyi & Chan, P.W. & Li, Qiusheng & Lee, C.W., 2020. "Spatiotemporal analysis of offshore wind field characteristics and energy potential in Hong Kong," Energy, Elsevier, vol. 201(C).
- Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
- He, J.Y. & Chan, P.W. & Li, Q.S. & Tong, H.W., 2023. "Mapping future offshore wind resources in the South China Sea under climate change by regional climate modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Yang, Xinrong & Jiang, Xin & Liang, Shijing & Qin, Yingzuo & Ye, Fan & Ye, Bin & Xu, Jiayu & He, Xinyue & Wu, Jie & Dong, Tianyun & Cai, Xitian & Xu, Rongrong & Zeng, Zhenzhong, 2024. "Spatiotemporal variation of power law exponent on the use of wind energy," Applied Energy, Elsevier, vol. 356(C).
- Chancham, Chana & Waewsak, Jompob & Gagnon, Yves, 2017. "Offshore wind resource assessment and wind power plant optimization in the Gulf of Thailand," Energy, Elsevier, vol. 139(C), pages 706-731.
- Zhang, Jincheng & Zhao, Xiaowei, 2021. "Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning," Applied Energy, Elsevier, vol. 300(C).
- Akintayo T. Abolude & Wen Zhou, 2018. "A Comparative Computational Fluid Dynamic Study on the Effects of Terrain Type on Hub-Height Wind Aerodynamic Properties," Energies, MDPI, vol. 12(1), pages 1-14, December.
- Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
- Radünz, William Corrêa & Mattuella, Jussara M. Leite & Petry, Adriane Prisco, 2020. "Wind resource mapping and energy estimation in complex terrain: A framework based on field observations and computational fluid dynamics," Renewable Energy, Elsevier, vol. 152(C), pages 494-515.
- Souma Chowdhury & Ali Mehmani & Jie Zhang & Achille Messac, 2016. "Market Suitability and Performance Tradeoffs Offered by Commercial Wind Turbines across Differing Wind Regimes," Energies, MDPI, vol. 9(5), pages 1-31, May.
- Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
- Muche, Thomas & Pohl, Ralf & Höge, Christin, 2016. "Economically optimal configuration of onshore horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 90(C), pages 469-480.
- Osvaldo Rodríguez & Jesús A del Río & Oscar A Jaramillo & Manuel Martínez, 2015. "Wind Power Error Estimation in Resource Assessments," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-13, May.
- Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
- Nie, Bingchuan & Li, Jiachun, 2018. "Technical potential assessment of offshore wind energy over shallow continent shelf along China coast," Renewable Energy, Elsevier, vol. 128(PA), pages 391-399.
- Mohandes, M. & Rehman, S. & Rahman, S.M., 2011. "Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)," Applied Energy, Elsevier, vol. 88(11), pages 4024-4032.
More about this item
Keywords
light detection and ranging (LIDAR); nacelle transfer function (NTF); power curve; power performance test; wind turbine; uncertainty;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1087-:d:215893. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.