IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1805-d230481.html
   My bibliography  Save this article

Modified Power Curves for Prediction of Power Output of Wind Farms

Author

Listed:
  • Mohsen Vahidzadeh

    (IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, USA
    Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242, USA)

  • Corey D. Markfort

    (IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, USA
    Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242, USA)

Abstract

Power curves are used to model power generation of wind turbines, which in turn is used for wind energy assessment and forecasting total wind farm power output of operating wind farms. Power curves are based on ideal uniform inflow conditions, however, as wind turbines are installed in regions of heterogeneous and complex terrain, the effect of non-ideal operating conditions resulting in variability of the inflow must be considered. We propose an approach to include turbulence, yaw error, air density, wind veer and shear in the prediction of turbine power by using high resolution wind measurements. In this study, two modified power curves using standard ten-minute wind speed and high resolution one-second data along with a derived power surface were tested and compared to the standard operating curve for a 2.5 MW horizontal axis wind turbine. Data from supervisory control and data acquisition (SCADA) system along with wind speed measurements from a nacelle-mounted sonic anemometer and wind speed measurements from a nearby meteorological tower are used in the models. The results show that all of the proposed models perform better than the standard power curve while the power surface results in the most accurate power prediction.

Suggested Citation

  • Mohsen Vahidzadeh & Corey D. Markfort, 2019. "Modified Power Curves for Prediction of Power Output of Wind Farms," Energies, MDPI, vol. 12(9), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1805-:d:230481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongheon Shin & Kyungnam Ko, 2019. "Application of the Nacelle Transfer Function by a Nacelle-Mounted Light Detection and Ranging System to Wind Turbine Power Performance Measurement," Energies, MDPI, vol. 12(6), pages 1-15, March.
    2. Jooyoung Jeon & James W. Taylor, 2012. "Using Conditional Kernel Density Estimation for Wind Power Density Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 66-79, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    2. Chao Tan & Wenrui Tan & Yanjun Shen & Long Yang, 2023. "Multistep Wind Power Prediction Using Time-Varying Filtered Empirical Modal Decomposition and Improved Adaptive Sparrow Search Algorithm-Optimized Phase Space Reconstruction–Echo State Network," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
    3. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
    4. Jian Teng & Corey D. Markfort, 2020. "A Calibration Procedure for an Analytical Wake Model Using Wind Farm Operational Data," Energies, MDPI, vol. 13(14), pages 1-19, July.
    5. Mohsen Vahidzadeh & Corey D. Markfort, 2020. "An Induction Curve Model for Prediction of Power Output of Wind Turbines in Complex Conditions," Energies, MDPI, vol. 13(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin, Dongheon & Ko, Kyungnam, 2022. "Experimental study on application of nacelle-mounted LiDAR for analyzing wind turbine wake effects by distance," Energy, Elsevier, vol. 243(C).
    2. Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
    3. Taylor, James W., 2017. "Probabilistic forecasting of wind power ramp events using autoregressive logit models," European Journal of Operational Research, Elsevier, vol. 259(2), pages 703-712.
    4. Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
    5. Fresoli, Diego E. & Ruiz, Esther, 2016. "The uncertainty of conditional returns, volatilities and correlations in DCC models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 170-185.
    6. Hu, Yang & Xi, Yunhua & Pan, Chenyang & Li, Gengda & Chen, Baowei, 2020. "Daily condition monitoring of grid-connected wind turbine via high-fidelity power curve and its comprehensive rating," Renewable Energy, Elsevier, vol. 146(C), pages 2095-2111.
    7. Jeon, Jooyoung & Taylor, James W., 2016. "Short-term density forecasting of wave energy using ARMA-GARCH models and kernel density estimation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 991-1004.
    8. Xydas, Erotokritos & Qadrdan, Meysam & Marmaras, Charalampos & Cipcigan, Liana & Jenkins, Nick & Ameli, Hossein, 2017. "Probabilistic wind power forecasting and its application in the scheduling of gas-fired generators," Applied Energy, Elsevier, vol. 192(C), pages 382-394.
    9. Jing Zhang & Jixing Chen & Hao Liu & Yining Chen & Jingwen Yang & Zongtao Yuan & Qingan Li, 2023. "Applicability of WorldCover in Wind Power Engineering: Application Research of Coupled Wake Model Based on Practical Project," Energies, MDPI, vol. 16(5), pages 1-16, February.
    10. Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
    11. Arora Siddharth & Little Max A. & McSharry Patrick E., 2013. "Nonlinear and nonparametric modeling approaches for probabilistic forecasting of the US gross national product," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(4), pages 395-420, September.
    12. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    13. Soukissian, Takvor H. & Karathanasi, Flora E., 2017. "On the selection of bivariate parametric models for wind data," Applied Energy, Elsevier, vol. 188(C), pages 280-304.
    14. Arora, Siddharth & Taylor, James W., 2016. "Forecasting electricity smart meter data using conditional kernel density estimation," Omega, Elsevier, vol. 59(PA), pages 47-59.
    15. Park, Jungyeon & Alvarenga, Estêvão & Jeon, Jooyoung & Li, Ran & Petropoulos, Fotios & Kim, Hokyun & Ahn, Kwangwon, 2024. "Probabilistic forecast-based portfolio optimization of electricity demand at low aggregation levels," Applied Energy, Elsevier, vol. 353(PB).
    16. Ines Würth & Laura Valldecabres & Elliot Simon & Corinna Möhrlen & Bahri Uzunoğlu & Ciaran Gilbert & Gregor Giebel & David Schlipf & Anton Kaifel, 2019. "Minute-Scale Forecasting of Wind Power—Results from the Collaborative Workshop of IEA Wind Task 32 and 36," Energies, MDPI, vol. 12(4), pages 1-30, February.
    17. Nuño Martinez, Edgar & Cutululis, Nicolaos & Sørensen, Poul, 2018. "High dimensional dependence in power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 197-213.
    18. Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.
    19. Yanhui Qiao & Yongqian Liu & Yang Chen & Shuang Han & Luo Wang, 2022. "Power Generation Performance Indicators of Wind Farms Including the Influence of Wind Energy Resource Differences," Energies, MDPI, vol. 15(5), pages 1-25, February.
    20. Xu, Bing & Costa-Climent, Ricardo & Wang, Yanyan & Xiao, Yuan, 2020. "Financial support for micro and small enterprises: Economic benefit or social responsibility?," Journal of Business Research, Elsevier, vol. 115(C), pages 266-271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1805-:d:230481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.