IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p5214-d620240.html
   My bibliography  Save this article

Quantitative Evaluation Methods of Cluster Wind Power Output Volatility and Source-Load Timing Matching in Regional Power Grid

Author

Listed:
  • Yongqian Liu

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (NCEPU), School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Yanhui Qiao

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (NCEPU), School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Shuang Han

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (NCEPU), School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Yanping Xu

    (State Key Laboratory of Operation and Control of Renewable Energy & Storage Systems, China Electric Power Research Institute Co., Ltd., Beijing 100192, China)

  • Tianxiang Geng

    (State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750001, China)

  • Tiandong Ma

    (State Grid Ningxia Electric Power Co., Ltd., Yinchuan 750001, China)

Abstract

The quantitative evaluation of cluster wind power output volatility and source-load timing matching is vital to the planning and operation of the future power system dominated by new energy. However, the existing volatility evaluation methods of cluster wind power output do not fully consider timing volatility, or are not suitable for small sample data scenarios. Meanwhile, the existing source-load timing matching evaluation indicator ignores the impact of wind power permeability on the timing matching degree between wind power output and load. Therefore, the authors propose quantitative evaluation methods of cluster wind power output volatility and source-load timing matching in regional power grid. Firstly, the volatility-based smoothing coefficient is defined to quantitatively evaluate the smoothing effect of wind-farm cluster power output. Then, the source-load timing matching coefficient considering wind power permeability is proposed to quantitatively evaluate the timing matching degree of regional wind power output and load, and the corresponding function model of volatility-based smoothing coefficient and source-load timing matching coefficient is established. Finally, the validity and applicability of the proposed methods are verified by MATLAB software based on the actual power output of 10 wind farms and actual grid load in a certain grid dispatching cross-section of northeast China. The results demonstrated that the proposed volatility-based smoothing coefficient can accurately represent the smoothing effect of wind farm cluster power output while maintaining the volatility continuity of wind power output time series and without affect from the data sample size. The source-load timing matching coefficient can accurately characterize the difference in the timing matching degree between wind power output and grid load under different wind power permeability and the influence degree on grid load.

Suggested Citation

  • Yongqian Liu & Yanhui Qiao & Shuang Han & Yanping Xu & Tianxiang Geng & Tiandong Ma, 2021. "Quantitative Evaluation Methods of Cluster Wind Power Output Volatility and Source-Load Timing Matching in Regional Power Grid," Energies, MDPI, vol. 14(16), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5214-:d:620240
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/5214/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/5214/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Jiang & Qiwei Chen, 2018. "An Optimal Source-Load Coordinated Restoration Method Considering Double Uncertainty," Energies, MDPI, vol. 11(3), pages 1-18, March.
    2. Tarroja, Brian & Mueller, Fabian & Eichman, Joshua D. & Brouwer, Jack & Samuelsen, Scott, 2011. "Spatial and temporal analysis of electric wind generation intermittency and dynamics," Renewable Energy, Elsevier, vol. 36(12), pages 3424-3432.
    3. Shahriari, Mehdi & Blumsack, Seth, 2017. "Scaling of wind energy variability over space and time," Applied Energy, Elsevier, vol. 195(C), pages 572-585.
    4. Han, Shuang & Qiao, Yan-hui & Yan, Jie & Liu, Yong-qian & Li, Li & Wang, Zheng, 2019. "Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network," Applied Energy, Elsevier, vol. 239(C), pages 181-191.
    5. Commin, Andrew N. & Davidson, Magnus W.H. & Largey, Nicola & Gaffney, Paul P.J. & Braidwood, David W. & Gibb, Stuart W. & McClatchey, John, 2017. "Spatial smoothing of onshore wind: Implications for strategic development in Scotland," Energy Policy, Elsevier, vol. 109(C), pages 36-48.
    6. Hasan, Kazi Nazmul & Preece, Robin & Milanović, Jovica V., 2019. "Existing approaches and trends in uncertainty modelling and probabilistic stability analysis of power systems with renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 168-180.
    7. Han, Li & Jing, Huitian & Zhang, Rongchang & Gao, Zhiyu, 2019. "Wind power forecast based on improved Long Short Term Memory network," Energy, Elsevier, vol. 189(C).
    8. Huang, Junling & Lu, Xi & McElroy, Michael B., 2014. "Meteorologically defined limits to reduction in the variability of outputs from a coupled wind farm system in the Central US," Renewable Energy, Elsevier, vol. 62(C), pages 331-340.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanhui Qiao & Yongqian Liu & Yang Chen & Shuang Han & Luo Wang, 2022. "Power Generation Performance Indicators of Wind Farms Including the Influence of Wind Energy Resource Differences," Energies, MDPI, vol. 15(5), pages 1-25, February.
    2. Peizhao Hong & Zhijun Qin, 2022. "Distributed Active Power Optimal Dispatching of Wind Farm Cluster Considering Wind Power Uncertainty," Energies, MDPI, vol. 15(7), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiao & Li, Youping & Liu, Chunqiong & Wu, Bo & Shi, Kai, 2022. "A study of cross-correlations between PM2.5 and O3 based on Copula and Multifractal methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    3. Álvarez-García, Francisco J. & Fresno-Schmolk, Gonzalo & OrtizBevia, María J. & Cabos, William & RuizdeElvira, Antonio, 2020. "Reduction of aggregate wind power variability using Empirical Orthogonal Teleconnections: An application in the Iberian Peninsula," Renewable Energy, Elsevier, vol. 159(C), pages 151-161.
    4. Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
    5. Han, Chanok & Vinel, Alexander, 2022. "Reducing forecasting error by optimally pooling wind energy generation sources through portfolio optimization," Energy, Elsevier, vol. 239(PB).
    6. Jianwei Gao & Yu Yang & Fangjie Gao & Pengcheng Liang, 2021. "Optimization of Electric Vehicles Based on Frank-Copula- GlueCVaR Combined Wind and Photovoltaic Output Scheduling Research," Energies, MDPI, vol. 14(19), pages 1-15, September.
    7. Medine Colak & Mehmet Yesilbudak & Ramazan Bayindir, 2020. "Daily Photovoltaic Power Prediction Enhanced by Hybrid GWO-MLP, ALO-MLP and WOA-MLP Models Using Meteorological Information," Energies, MDPI, vol. 13(4), pages 1-19, February.
    8. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    9. Liu, Yangyang & Shen, Zhongqi & Tang, Xiaowei & Lian, Hongbo & Li, Jiarui & Gong, Jinxia, 2019. "Worst-case conditional value-at-risk based bidding strategy for wind-hydro hybrid systems under probability distribution uncertainties," Applied Energy, Elsevier, vol. 256(C).
    10. Zhang, Fei & Li, Peng-Cheng & Gao, Lu & Liu, Yong-Qian & Ren, Xiao-Ying, 2021. "Application of autoregressive dynamic adaptive (ARDA) model in real-time wind power forecasting," Renewable Energy, Elsevier, vol. 169(C), pages 129-143.
    11. Simian Pang & Zixuan Zheng & Fan Luo & Xianyong Xiao & Lanlan Xu, 2021. "Hybrid Forecasting Methodology for Wind Power-Photovoltaic-Concentrating Solar Power Generation Clustered Renewable Energy Systems," Sustainability, MDPI, vol. 13(12), pages 1-16, June.
    12. Seung Chan Jo & Young Gyu Jin & Yong Tae Yoon & Ho Chan Kim, 2021. "Methods for Integrating Extraterrestrial Radiation into Neural Network Models for Day-Ahead PV Generation Forecasting," Energies, MDPI, vol. 14(9), pages 1-18, May.
    13. Gong, Yu & Liu, Pan & Ming, Bo & Li, Dingfang, 2021. "Identifying the effect of forecast uncertainties on hybrid power system operation: A case study of Longyangxia hydro–photovoltaic plant in China," Renewable Energy, Elsevier, vol. 178(C), pages 1303-1321.
    14. Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
    15. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    16. Bingchun Liu & Shijie Zhao & Xiaogang Yu & Lei Zhang & Qingshan Wang, 2020. "A Novel Deep Learning Approach for Wind Power Forecasting Based on WD-LSTM Model," Energies, MDPI, vol. 13(18), pages 1-17, September.
    17. Jie Zhu & Buxiang Zhou & Yiwei Qiu & Tianlei Zang & Yi Zhou & Shi Chen & Ningyi Dai & Huan Luo, 2023. "Survey on Modeling of Temporally and Spatially Interdependent Uncertainties in Renewable Power Systems," Energies, MDPI, vol. 16(16), pages 1-19, August.
    18. Khanmohammadi, Shoaib & Kizilkan, Onder & Ahmed, Faraedoon Waly, 2020. "Tri-objective optimization of a hybrid solar-assisted power-refrigeration system working with supercritical carbon dioxide," Renewable Energy, Elsevier, vol. 156(C), pages 1348-1360.
    19. Gu, Bo & Shen, Huiqiang & Lei, Xiaohui & Hu, Hao & Liu, Xinyu, 2021. "Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method," Applied Energy, Elsevier, vol. 299(C).
    20. Zucatelli, P.J. & Nascimento, E.G.S. & Santos, A.Á.B. & Arce, A.M.G. & Moreira, D.M., 2021. "An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:5214-:d:620240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.