Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I – Charging process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2014.11.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
- Felix Regin, A. & Solanki, S.C. & Saini, J.S., 2009. "An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation," Renewable Energy, Elsevier, vol. 34(7), pages 1765-1773.
- Silva, Pedro D. & Gonçalves, L. C. & Pires, L., 2002. "Transient behaviour of a latent-heat thermal-energy store: numerical and experimental studies," Applied Energy, Elsevier, vol. 73(1), pages 83-98, September.
- Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
- Aadmi, Moussa & Karkri, Mustapha & El Hammouti, Mimoun, 2014. "Heat transfer characteristics of thermal energy storage of a composite phase change materials: Numerical and experimental investigations," Energy, Elsevier, vol. 72(C), pages 381-392.
- Al-abidi, Abduljalil A. & Bin Mat, Sohif & Sopian, K. & Sulaiman, M.Y. & Mohammed, Abdulrahman Th., 2013. "CFD applications for latent heat thermal energy storage: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 353-363.
- Tay, N.H.S. & Belusko, M. & Bruno, F., 2012. "Experimental investigation of tubes in a phase change thermal energy storage system," Applied Energy, Elsevier, vol. 90(1), pages 288-297.
- Fang, Guiyin & Li, Hui & Chen, Zhi & Liu, Xu, 2010. "Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials," Energy, Elsevier, vol. 35(12), pages 4622-4626.
- Joulin, Annabelle & Younsi, Zohir & Zalewski, Laurent & Lassue, Stéphane & Rousse, Daniel R. & Cavrot, Jean-Paul, 2011. "Experimental and numerical investigation of a phase change material: Thermal-energy storage and release," Applied Energy, Elsevier, vol. 88(7), pages 2454-2462, July.
- Xiao, X. & Zhang, P. & Li, M., 2013. "Preparation and thermal characterization of paraffin/metal foam composite phase change material," Applied Energy, Elsevier, vol. 112(C), pages 1357-1366.
- Bouadila, Salwa & Kooli, Sami & Skouri, Safa & Lazaar, Mariem & Farhat, Abdelhamid, 2014. "Improvement of the greenhouse climate using a solar air heater with latent storage energy," Energy, Elsevier, vol. 64(C), pages 663-672.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Li, Xiao-Yan & Yang, Liu & Wang, Xue-Lei & Miao, Xin-Yue & Yao, Yu & Qiang, Qiu-Qiu, 2018. "Investigation on the charging process of a multi-PCM latent heat thermal energy storage unit for use in conventional air-conditioning systems," Energy, Elsevier, vol. 150(C), pages 591-600.
- Xue, X.J. & Wang, H.N. & Wang, J.H. & Yang, B. & Yan, J. & Zhao, C.Y., 2024. "Experimental and numerical investigation on latent heat/cold stores for advanced pumped-thermal energy storage," Energy, Elsevier, vol. 300(C).
- Liu, Zichu & Quan, Zhenhua & Zhao, Yaohua & Jing, Heran & Wang, Lincheng & Liu, Xin, 2022. "Numerical research on the solidification heat transfer characteristics of ice thermal storage device based on a compact multichannel flat tube-closed rectangular fin heat exchanger," Energy, Elsevier, vol. 239(PD).
- Song, Yanlin & Zhang, Nan & Jing, Yaoge & Cao, Xiaoling & Yuan, Yanping & Haghighat, Fariborz, 2019. "Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage," Energy, Elsevier, vol. 189(C).
- Matthias Singer & Michael Fischlschweiger & Tim Zeiner, 2023. "Investigation of the Heat Storage Capacity and Storage Dynamics of a Novel Polymeric Macro-Encapsulated Core-Shell Particle Using a Paraffinic Core," Energies, MDPI, vol. 16(2), pages 1-14, January.
- Wang, H.N. & Xue, X.J. & Zhao, C.Y., 2024. "Performance analysis on combined energy supply system based on Carnot battery with packed-bed thermal energy storage," Renewable Energy, Elsevier, vol. 228(C).
- Kirincic, Mateo & Trp, Anica & Lenic, Kristian & Batista, Josip, 2024. "Latent thermal energy storage performance enhancement through optimization of geometry parameters," Applied Energy, Elsevier, vol. 365(C).
- Tao, Y.B. & Carey, V.P., 2016. "Effects of PCM thermophysical properties on thermal storage performance of a shell-and-tube latent heat storage unit," Applied Energy, Elsevier, vol. 179(C), pages 203-210.
- Kirincic, Mateo & Trp, Anica & Lenic, Kristian, 2021. "Influence of natural convection during melting and solidification of paraffin in a longitudinally finned shell-and-tube latent thermal energy storage on the applicability of developed numerical models," Renewable Energy, Elsevier, vol. 179(C), pages 1329-1344.
- Amirifard, Masoumeh & Kasaeian, Alibakhsh & Amidpour, Majid, 2018. "Integration of a solar pond with a latent heat storage system," Renewable Energy, Elsevier, vol. 125(C), pages 682-693.
- Wang, Kai & Yan, Ting & Zhao, Y.M. & Li, G.D. & Pan, W.G., 2022. "Preparation and thermal properties of palmitic acid @ZnO/Expanded graphite composite phase change material for heat storage," Energy, Elsevier, vol. 242(C).
- Xun Yang & Teng Xiong & Jing Liang Dong & Wen Xin Li & Yong Wang, 2017. "Investigation of the Dynamic Melting Process in a Thermal Energy Storage Unit Using a Helical Coil Heat Exchanger," Energies, MDPI, vol. 10(8), pages 1-18, August.
- Zhao, Y. & You, Y. & Liu, H.B. & Zhao, C.Y. & Xu, Z.G., 2018. "Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process," Energy, Elsevier, vol. 157(C), pages 690-706.
- Meng, Z.N. & Zhang, P., 2017. "Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM," Applied Energy, Elsevier, vol. 190(C), pages 524-539.
- Zauner, Christoph & Hengstberger, Florian & Mörzinger, Benjamin & Hofmann, Rene & Walter, Heimo, 2017. "Experimental characterization and simulation of a hybrid sensible-latent heat storage," Applied Energy, Elsevier, vol. 189(C), pages 506-519.
- Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Diarce, Gonzalo & Taylor, Robert A., 2019. "An improved, generalized effective thermal conductivity method for rapid design of high temperature shell-and-tube latent heat thermal energy storage systems," Renewable Energy, Elsevier, vol. 132(C), pages 694-708.
- Xiao, Xin & Jia, Hongwei & Wen, Dongsheng & Zhao, Xudong, 2020. "Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite," Energy, Elsevier, vol. 192(C).
- Merlin, Kevin & Soto, Jérôme & Delaunay, Didier & Traonvouez, Luc, 2016. "Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage," Applied Energy, Elsevier, vol. 183(C), pages 491-503.
- Soh, Alex & Huang, Zhifeng & Shao, Yunlin & Islam, M.R. & Chua, K.J., 2023. "On the study of a thermal system for continuous cold energy harvesting and supply from LNG regasification," Energy, Elsevier, vol. 275(C).
- Fran Torbarina & Kristian Lenic & Anica Trp, 2022. "Computational Model of Shell and Finned Tube Latent Thermal Energy Storage Developed as a New TRNSYS Type," Energies, MDPI, vol. 15(7), pages 1-26, March.
- Xu, Tianhao & Gunasekara, Saman Nimali & Chiu, Justin Ningwei & Palm, Björn & Sawalha, Samer, 2020. "Thermal behavior of a sodium acetate trihydrate-based PCM: T-history and full-scale tests," Applied Energy, Elsevier, vol. 261(C).
- Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
- Diao, Yanhua & Kang, Yameng & Liang, Lin & Zhao, Yaohua & Zhu, Tingting, 2017. "Experimental investigation on the heat transfer performance of a latent thermal energy storage device based on flat miniature heat pipe arrays," Energy, Elsevier, vol. 138(C), pages 929-941.
- Wang, C. & Zhu, Y., 2018. "Entransy analysis on optimization of a double-stage latent heat storage unit with the consideration of an unequal separation," Energy, Elsevier, vol. 148(C), pages 386-396.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pitié, F. & Zhao, C.Y. & Baeyens, J. & Degrève, J. & Zhang, H.L., 2013. "Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles," Applied Energy, Elsevier, vol. 109(C), pages 505-513.
- Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
- Mehdaoui, Farah & Hazami, Majdi & Messaouda, Anis & Taghouti, Hichem & Guizani, AmenAllah, 2019. "Thermal testing and numerical simulation of PCM wall integrated inside a test cell on a small scale and subjected to the thermal stresses," Renewable Energy, Elsevier, vol. 135(C), pages 597-607.
- Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
- Zhang, Tao & Huo, Dongxin & Wang, Chengyao & Shi, Zhengrong, 2023. "Review of the modeling approaches of phase change processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
- Chinnasamy, Veerakumar & Heo, Jaehyeok & Jung, Sungyong & Lee, Hoseong & Cho, Honghyun, 2023. "Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review," Energy, Elsevier, vol. 262(PB).
- Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
- Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
- Beata Pytlik & Daniel Smykowski & Piotr Szulc, 2022. "The Impact of Baffle Geometry in the PCM Heat Storage Unit on the Charging Process with High and Low Water Streams," Energies, MDPI, vol. 15(24), pages 1-17, December.
- Ma, F. & Zhang, P. & Xia, Z.Z. & Li, M., 2015. "How to enhance the effective thermal conductivity of composite material based on optimization method?," Energy, Elsevier, vol. 87(C), pages 400-411.
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Shi, X.J. & Zhang, P., 2013. "A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system," Applied Energy, Elsevier, vol. 112(C), pages 1393-1402.
- Sardari, Pouyan Talebizadeh & Mohammed, Hayder I. & Giddings, Donald & walker, Gavin S. & Gillott, Mark & Grant, David, 2019. "Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source," Energy, Elsevier, vol. 189(C).
- Beyne, W. & T'Jollyn, I. & Lecompte, S. & Cabeza, L.F. & De Paepe, M., 2023. "Standardised methods for the determination of key performance indicators for thermal energy storage heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
- Allouche, Yosr & Varga, Szabolcs & Bouden, Chiheb & Oliveira, Armando C., 2016. "Validation of a CFD model for the simulation of heat transfer in a tubes-in-tank PCM storage unit," Renewable Energy, Elsevier, vol. 89(C), pages 371-379.
- Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
- Bazri, Shahab & Badruddin, Irfan Anjum & Naghavi, Mohammad Sajad & Bahiraei, Mehdi, 2018. "A review of numerical studies on solar collectors integrated with latent heat storage systems employing fins or nanoparticles," Renewable Energy, Elsevier, vol. 118(C), pages 761-778.
- Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Mohamed, Shamseldin A. & Al-Sulaiman, Fahad A. & Ibrahim, Nasiru I. & Zahir, Md. Hasan & Al-Ahmed, Amir & Saidur, R. & Yılbaş, B.S. & Sahin, A.Z., 2017. "A review on current status and challenges of inorganic phase change materials for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1072-1089.
- Palacios, Anabel & Cong, Lin & Navarro, M.E. & Ding, Yulong & Barreneche, Camila, 2019. "Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 32-52.
More about this item
Keywords
Latent thermal energy storage; Composite phase change materials; Heat transfer characteristics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:79:y:2015:i:c:p:337-350. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.