IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v311y2022ics0306261922001386.html
   My bibliography  Save this article

Experimental evaluation of an innovative radial-flow high-temperature packed bed thermal energy storage

Author

Listed:
  • Trevisan, Silvia
  • Wang, Wujun
  • Guedez, Rafael
  • Laumert, Björn

Abstract

High-temperature packed-bed thermal energy storage represents an economically viable large-scale energy storage solution for a future fossil-free energy scenario. The present work introduces first-of-a-kind experimental setup of a radial packed-bed TES, and its performance assessment based on experimental investigations. The storage performance is analyzed based on a set of dimensionless criteria and indicators. The laboratory-scale prototype has an energy capacity of 49.7 kWhth and working temperatures between 25 °C and 700 °C with a non-pressurized dry airflow. The influence of different working fluid mass flow rates and inlet temperatures during charge and discharge is assessed. The proposed storage design ensures limited pressure drop, lower than 1 mbar, and thermal losses, about 1.11 % during dwell after charging at 700 °C until a state of charge of 55.8 %. A maximum overall thermal efficiency of 71.8 % has been recorded and trade-offs between efficiency, thermal uniformity, and thermocline thickness are highlighted. This work testifies that reduced pressure drops are the key advantage of radial-flow packed-bed designs. Thermocline degradation is shown to be the main weak point of this thermal energy storage design.

Suggested Citation

  • Trevisan, Silvia & Wang, Wujun & Guedez, Rafael & Laumert, Björn, 2022. "Experimental evaluation of an innovative radial-flow high-temperature packed bed thermal energy storage," Applied Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922001386
    DOI: 10.1016/j.apenergy.2022.118672
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922001386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118672?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
    2. Zanganeh, G. & Pedretti, A. & Haselbacher, A. & Steinfeld, A., 2015. "Design of packed bed thermal energy storage systems for high-temperature industrial process heat," Applied Energy, Elsevier, vol. 137(C), pages 812-822.
    3. Odenthal, Christian & Steinmann, Wolf-Dieter & Zunft, Stefan, 2020. "Analysis of a horizontal flow closed loop thermal energy storage system in pilot scale for high temperature applications – Part I: Experimental investigation of the plant," Applied Energy, Elsevier, vol. 263(C).
    4. Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2020. "Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review," Energies, MDPI, vol. 13(18), pages 1-28, September.
    5. Gabriel Zsembinszki & Christian Orozco & Jaume Gasia & Tilman Barz & Johann Emhofer & Luisa F. Cabeza, 2020. "Evaluation of the State of Charge of a Solid/Liquid Phase Change Material in a Thermal Energy Storage Tank," Energies, MDPI, vol. 13(6), pages 1-26, March.
    6. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    7. Odenthal, Christian & Steinmann, Wolf-Dieter & Zunft, Stefan, 2020. "Analysis of a horizontal flow closed loop thermal energy storage system in pilot scale for high temperature applications – Part II: Numerical investigation," Applied Energy, Elsevier, vol. 263(C).
    8. Daschner, Robert & Binder, Samir & Mocker, Mario, 2013. "Pebble bed regenerator and storage system for high temperature use," Applied Energy, Elsevier, vol. 109(C), pages 394-401.
    9. Roos, Philipp & Haselbacher, Andreas, 2021. "Thermocline control through multi-tank thermal-energy storage systems," Applied Energy, Elsevier, vol. 281(C).
    10. Marti, Jan & Geissbühler, Lukas & Becattini, Viola & Haselbacher, Andreas & Steinfeld, Aldo, 2018. "Constrained multi-objective optimization of thermocline packed-bed thermal-energy storage," Applied Energy, Elsevier, vol. 216(C), pages 694-708.
    11. Flueckiger, Scott & Yang, Zhen & Garimella, Suresh V., 2011. "An integrated thermal and mechanical investigation of molten-salt thermocline energy storage," Applied Energy, Elsevier, vol. 88(6), pages 2098-2105, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Tiancheng & Pan, Mingming & Tan, Xianlin & Li, Lulu & Huang, Youbin & Mo, Chunlan, 2024. "Power prediction and packed bed heat storage control for marine diesel engine waste heat recovery," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortega-Fernández, Iñigo & Zavattoni, Simone A. & Rodríguez-Aseguinolaza, Javier & D'Aguanno, Bruno & Barbato, Maurizio C., 2017. "Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology," Applied Energy, Elsevier, vol. 205(C), pages 280-293.
    2. Yunshen Zhang & Yun Guo & Jiaao Zhu & Weijian Yuan & Feng Zhao, 2024. "New Advances in Materials, Applications, and Design Optimization of Thermocline Heat Storage: Comprehensive Review," Energies, MDPI, vol. 17(10), pages 1-41, May.
    3. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    4. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
    5. Fasquelle, T. & Falcoz, Q. & Neveu, P. & Hoffmann, J.-F., 2018. "A temperature threshold evaluation for thermocline energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 212(C), pages 1153-1164.
    6. Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
    7. Yu, Qinghua & Jiang, Zhu & Cong, Lin & Lu, Tiejun & Suleiman, Bilyaminu & Leng, Guanghui & Wu, Zhentao & Ding, Yulong & Li, Yongliang, 2019. "A novel low-temperature fabrication approach of composite phase change materials for high temperature thermal energy storage," Applied Energy, Elsevier, vol. 237(C), pages 367-377.
    8. Singh, Shobhana & Sørensen, Kim & Condra, Thomas & Batz, Søren Søndergaard & Kristensen, Kristian, 2019. "Investigation on transient performance of a large-scale packed-bed thermal energy storage," Applied Energy, Elsevier, vol. 239(C), pages 1114-1129.
    9. Jacob, Rhys & Belusko, Martin & Liu, Ming & Saman, Wasim & Bruno, Frank, 2019. "Using renewables coupled with thermal energy storage to reduce natural gas consumption in higher temperature commercial/industrial applications," Renewable Energy, Elsevier, vol. 131(C), pages 1035-1046.
    10. Schmidt, Matthias & Linder, Marc, 2017. "Power generation based on the Ca(OH)2/ CaO thermochemical storage system – Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design," Applied Energy, Elsevier, vol. 203(C), pages 594-607.
    11. Marti, Jan & Geissbühler, Lukas & Becattini, Viola & Haselbacher, Andreas & Steinfeld, Aldo, 2018. "Constrained multi-objective optimization of thermocline packed-bed thermal-energy storage," Applied Energy, Elsevier, vol. 216(C), pages 694-708.
    12. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Schwarzmayr, Paul & Birkelbach, Felix & Walter, Heimo & Hofmann, René, 2024. "Exergy efficiency and thermocline degradation of a packed bed thermal energy storage in partial cycle operation: An experimental study," Applied Energy, Elsevier, vol. 360(C).
    14. Chang, Zheshao & Li, Xin & Xu, Chao & Chang, Chun & Wang, Zhifeng & Zhang, Qiangqiang & Liao, Zhirong & Li, Qing, 2016. "The effect of the physical boundary conditions on the thermal performance of molten salt thermocline tank," Renewable Energy, Elsevier, vol. 96(PA), pages 190-202.
    15. Blanquiceth, J. & Cardemil, J.M. & Henríquez, M. & Escobar, R., 2023. "Thermodynamic evaluation of a pumped thermal electricity storage system integrated with large-scale thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Verena Halmschlager & Stefan Müllner & René Hofmann, 2021. "Mechanistic Grey-Box Modeling of a Packed-Bed Regenerator for Industrial Applications," Energies, MDPI, vol. 14(11), pages 1-18, May.
    17. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2022. "Technical and economic analysis of Brayton-cycle-based pumped thermal electricity storage systems with direct and indirect thermal energy storage," Energy, Elsevier, vol. 239(PC).
    18. Jin, Kaiyuan & Wirz, Richard E., 2020. "Sulfur heat transfer behavior in vertically-oriented and nonuniformly‑heated isochoric thermal energy storage systems," Applied Energy, Elsevier, vol. 260(C).
    19. Attonaty, Kevin & Stouffs, Pascal & Pouvreau, Jérôme & Oriol, Jean & Deydier, Alexandre, 2019. "Thermodynamic analysis of a 200 MWh electricity storage system based on high temperature thermal energy storage," Energy, Elsevier, vol. 172(C), pages 1132-1143.
    20. Calderón-Vásquez, Ignacio & Cortés, Eduardo & García, Jesús & Segovia, Valentina & Caroca, Alejandro & Sarmiento, Cristóbal & Barraza, Rodrigo & Cardemil, José M., 2021. "Review on modeling approaches for packed-bed thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922001386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.