IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4023-d827955.html
   My bibliography  Save this article

An Experimental Study of the Heat Storage and the Discharge Performance and an Economic Performance Analysis of a Flat Plate Phase Change Material (PCM) Storage Tank

Author

Listed:
  • Juan Zhao

    (School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

  • Junmei Gao

    (School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

  • Junhui Liao

    (School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

  • Botao Zhou

    (School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

  • Yifei Bai

    (School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

  • Tianwei Qiang

    (School of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

Abstract

Solar heating technology has the advantages of being high efficiency, energy-saving, and environment protecting; however, the instability of solar energy and its mismatch with the variation characteristics of building heat load have caused great difficulties in the design and the efficient operation strategy of a solar system. A heat storage tank is an important part of a solar hot water system. In order to improve system efficiency, this paper proposes a flat plate PCM storage tank, establishes a mathematical model, and conducts experimental verification under different working conditions. Experiments show that in the heat storage process, the phase change material (PCM) only accounts for less than 20% of the space of the PCM storage tank, and its heat storage can reach 50% of the total heat storage of the tank. In the discharge process, the water temperature of the ordinary tank decreases by 20 °C within 1.5 h, and the phase change process lasts approximately 3 h, with the water temperature remaining at 45~50 °C during this period. In the natural cooling process, the heat discharge of the two water tanks at night was similar, while the temperature of the ordinary water tank decreased by 12 °C and that of the phase change water tank decreased by 7 °C. By simulating the dynamic simulation model of the composite solar phase change thermal storage combined with an air-cooled heat pump system, the results show that the solar heating system with a PCM storage tank (SHS-PCM) saves 34% more energy than a solar heating system with a common tank (SHS-without PCM), and the volume of the PCM storage tank is reduced to 1/5 of the ordinary tank. The investment payback period method of energy saving reconstruction is used to analyze the economy of the SHS-PCM and the SHS-without PCM, the initial investment cost of the SHS-PCM is CNY 9858 higher than the SHS-without PCM, but the annual operation cost is saved by CNY 12,100, and the project investment payback period is 0.81 years, which has energy-saving potential and economic benefits.

Suggested Citation

  • Juan Zhao & Junmei Gao & Junhui Liao & Botao Zhou & Yifei Bai & Tianwei Qiang, 2022. "An Experimental Study of the Heat Storage and the Discharge Performance and an Economic Performance Analysis of a Flat Plate Phase Change Material (PCM) Storage Tank," Energies, MDPI, vol. 15(11), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4023-:d:827955
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Zhao & Yasheng Ji & Yanping Yuan & Zhaoli Zhang & Jun Lu, 2018. "Energy-Saving Analysis of Solar Heating System with PCM Storage Tank," Energies, MDPI, vol. 11(1), pages 1-18, January.
    2. Juan Zhao & Yasheng Ji & Yanping Yuan & Zhaoli Zhang & Jun Lu, 2017. "Seven Operation Modes and Simulation Models of Solar Heating System with PCM Storage Tank," Energies, MDPI, vol. 10(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Liu & Yuanji Li & Pan Wei & Tian Xiao & Xiangzhao Meng & Xiaohu Yang, 2022. "Thermo-Economic Assessments on a Heat Storage Tank Filled with Graded Metal Foam," Energies, MDPI, vol. 15(19), pages 1-16, September.
    2. Beata Pytlik & Daniel Smykowski & Piotr Szulc, 2022. "The Impact of Baffle Geometry in the PCM Heat Storage Unit on the Charging Process with High and Low Water Streams," Energies, MDPI, vol. 15(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Juan & Yuan, Yanping & Haghighat, Fariborz & Lu, Jun & Feng, Guohui, 2019. "Investigation of energy performance and operational schemes of a Tibet-focused PCM-integrated solar heating system employing a dynamic energy simulation model," Energy, Elsevier, vol. 172(C), pages 141-154.
    2. Kasper, Lukas & Pernsteiner, Dominik & Schirrer, Alexander & Jakubek, Stefan & Hofmann, René, 2023. "Experimental characterization, parameter identification and numerical sensitivity analysis of a novel hybrid sensible/latent thermal energy storage prototype for industrial retrofit applications," Applied Energy, Elsevier, vol. 344(C).
    3. Caliano, Martina & Bianco, Nicola & Graditi, Giorgio & Mongibello, Luigi, 2019. "Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation," Applied Energy, Elsevier, vol. 256(C).
    4. Aránzazu Fernández-García & Adel Juaidi & Florian Sutter & Lucía Martínez-Arcos & Francisco Manzano-Agugliaro, 2018. "Solar Reflector Materials Degradation Due to the Sand Deposited on the Backside Protective Paints," Energies, MDPI, vol. 11(4), pages 1-20, March.
    5. F. Javier Batlles & Bartosz Gil & Svetlana Ushak & Jacek Kasperski & Marcos Luján & Diana Maldonado & Magdalena Nemś & Artur Nemś & Antonio M. Puertas & Manuel S. Romero-Cano & Sabina Rosiek & Mario G, 2020. "Development and Results from Application of PCM-Based Storage Tanks in a Solar Thermal Comfort System of an Institutional Building—A Case Study," Energies, MDPI, vol. 13(15), pages 1-24, July.
    6. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    7. Juan Zhao & Yasheng Ji & Yanping Yuan & Zhaoli Zhang & Jun Lu, 2018. "Energy-Saving Analysis of Solar Heating System with PCM Storage Tank," Energies, MDPI, vol. 11(1), pages 1-18, January.
    8. Piotr Olczak & Dominika Matuszewska & Jadwiga Zabagło, 2020. "The Comparison of Solar Energy Gaining Effectiveness between Flat Plate Collectors and Evacuated Tube Collectors with Heat Pipe: Case Study," Energies, MDPI, vol. 13(7), pages 1-14, April.
    9. Feng, Guohui & Liu, Ming & Huang, Kailiang & Qiang, Xiaoqian & Chang, Qunpeng, 2019. "Development of a math module of shell and tube phase-change energy storage system used in TRNSYS," Energy, Elsevier, vol. 183(C), pages 428-436.
    10. Ding Ding & Wenjing He & Chunlu Liu, 2021. "Mathematical Modeling and Optimization of Vanadium-Titanium Black Ceramic Solar Collectors," Energies, MDPI, vol. 14(3), pages 1-20, January.
    11. Liang, Yan & Yang, Haibin & Wang, Huilong & Bao, Xiaohua & Cui, Hongzhi, 2024. "Enhancing energy efficiency of air conditioning system through optimization of PCM-based cold energy storage tank: A data center case study," Energy, Elsevier, vol. 286(C).
    12. Mendecka, Barbara & Cozzolino, Raffaello & Leveni, Martina & Bella, Gino, 2019. "Energetic and exergetic performance evaluation of a solar cooling and heating system assisted with thermal storage," Energy, Elsevier, vol. 176(C), pages 816-829.
    13. Seok-Joon Lee & Seul-Hyun Park, 2018. "An Experimental Investigation of Thermal Characteristics of Phase Change Material Applied to Improve the Isothermal Operation of a Refrigerator," Energies, MDPI, vol. 11(8), pages 1-14, August.
    14. Sabrina Dusek & René Hofmann, 2019. "Modeling of a Hybrid Steam Storage and Validation with an Industrial Ruths Steam Storage Line," Energies, MDPI, vol. 12(6), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4023-:d:827955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.