IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8959-d985435.html
   My bibliography  Save this article

Different Topologies of Electrical Machines, Storage Systems, and Power Electronic Converters and Their Control for Battery Electric Vehicles—A Technical Review

Author

Listed:
  • Elango Sangeetha

    (Vellore Institute of Technology, School of Electrical Engineering, Vellore 632014, Tamil Nadu, India)

  • Vijayapriya Ramachandran

    (Vellore Institute of Technology, School of Electrical Engineering, Vellore 632014, Tamil Nadu, India)

Abstract

Electric vehicles (EVs) are emerging as an alternative transportation system owing to a reduction in depleting lubricates usage and greenhouse gas emissions. This paper presents a technical review of each and every sub-system and its feasible control of battery EV (BEV) propulsion units. The study includes the possible combination of electrical machines (EMs), storage system, and power electronic converters and their associated control strategies. The primary unit, i.e., EM, is the heart of the EV, which is used to drive the vehicle at the desired speed as well as to restore the regenerative braking (RB) energy that is generated to enhance the overall system reliability. To electrify the transportation sector, it is necessary to include new options of power electronic converter topologies and their associated control strategies for numerous reasons, which include extracting maximum power from sources in case the EV is powered from renewable energy resources, boosting the energy storage capability for longer electric range, managing power flow from the source to battery or battery to vehicle or vehicle to battery, and regulating the speed of the vehicle and braking control. Based on the survey, the suitable combination of sub-systems and their control for three and four-wheeler EVs are summarized in this paper.

Suggested Citation

  • Elango Sangeetha & Vijayapriya Ramachandran, 2022. "Different Topologies of Electrical Machines, Storage Systems, and Power Electronic Converters and Their Control for Battery Electric Vehicles—A Technical Review," Energies, MDPI, vol. 15(23), pages 1-28, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8959-:d:985435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Kong, Xiaodan & Yan, Xingda, 2021. "Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles," Energy, Elsevier, vol. 221(C).
    2. Zachary A. Needell & James McNerney & Michael T. Chang & Jessika E. Trancik, 2016. "Potential for widespread electrification of personal vehicle travel in the United States," Nature Energy, Nature, vol. 1(9), pages 1-7, September.
    3. Turksoy, Omer & Yilmaz, Unal & Teke, Ahmet, 2021. "Efficient AC-DC power factor corrected boost converter design for battery charger in electric vehicles," Energy, Elsevier, vol. 221(C).
    4. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    5. Zhu, Yueying & Wu, Hao & Zhen, Chengcong, 2021. "Regenerative braking control under sliding braking condition of electric vehicles with switched reluctance motor drive system," Energy, Elsevier, vol. 230(C).
    6. Li, Liang & Li, Xujian & Wang, Xiangyu & Song, Jian & He, Kai & Li, Chenfeng, 2016. "Analysis of downshift’s improvement to energy efficiency of an electric vehicle during regenerative braking," Applied Energy, Elsevier, vol. 176(C), pages 125-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florin Mariasiu & Ioan Aurel Chereches & Horia Raboca, 2023. "Statistical Analysis of the Interdependence between the Technical and Functional Parameters of Electric Vehicles in the European Market," Energies, MDPI, vol. 16(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Chao & Sun, Tonglin & Wang, Weida & Li, Ying & Zhang, Yuhang & Zha, Mingjun, 2024. "Regenerative braking system development and perspectives for electric vehicles: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    2. Zhou, Xiaochuan & Wu, Gang & Wang, Chunyan & Zhang, Ruijun & Shi, Shuaipeng & Zhao, Wanzhong, 2024. "Cooperative optimization of energy recovery and braking feel based on vehicle speed prediction under downshifting conditions," Energy, Elsevier, vol. 301(C).
    3. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    4. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    5. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    6. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    7. Zia Wadud & Muhammad Adeel & Jillian Anable, 2024. "Understanding the large role of long-distance travel in carbon emissions from passenger travel," Nature Energy, Nature, vol. 9(9), pages 1129-1138, September.
    8. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    9. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2016. "Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 1351-1360.
    10. Zarazua de Rubens, Gerardo, 2019. "Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market," Energy, Elsevier, vol. 172(C), pages 243-254.
    11. Kim, Dong-Min & Lee, Soo-Gyung & Kim, Dae-Kee & Park, Min-Ro & Lim, Myung-Seop, 2022. "Sizing and optimization process of hybrid electric propulsion system for heavy-duty vehicle based on Gaussian process modeling considering traction motor characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Han, Zhongliang & Xu, Nan & Chen, Hong & Huang, Yanjun & Zhao, Bin, 2018. "Energy-efficient control of electric vehicles based on linear quadratic regulator and phase plane analysis," Applied Energy, Elsevier, vol. 213(C), pages 639-657.
    13. Yifei Xie & Mazen Danaf & Carlos Lima Azevedo & Arun Prakash Akkinepally & Bilge Atasoy & Kyungsoo Jeong & Ravi Seshadri & Moshe Ben-Akiva, 2019. "Behavioral modeling of on-demand mobility services: general framework and application to sustainable travel incentives," Transportation, Springer, vol. 46(6), pages 2017-2039, December.
    14. Abdeldjalil Djouahi & Belkhir Negrou & Boubakeur Rouabah & Abdelbasset Mahboub & Mohamed Mahmoud Samy, 2023. "Optimal Sizing of Battery and Super-Capacitor Based on the MOPSO Technique via a New FC-HEV Application," Energies, MDPI, vol. 16(9), pages 1-18, May.
    15. Badji, Abderrezak & Abdeslam, Djaffar Ould & Chabane, Djafar & Benamrouche, Nacereddine, 2022. "Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations," Energy, Elsevier, vol. 249(C).
    16. Zhang, Junjie & Jia, Rongwen & Yang, Hangjun & Dong, Kangyin, 2022. "Does electric vehicle promotion in the public sector contribute to urban transport carbon emissions reduction?," Transport Policy, Elsevier, vol. 125(C), pages 151-163.
    17. Reda Cherif & Fuad Hasanov & Aditya Pande, 2021. "Riding the Energy Transition: Oil beyond 2040," Asian Economic Policy Review, Japan Center for Economic Research, vol. 16(1), pages 117-137, January.
    18. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    19. Zhao, Weiwei & Zhang, Tongtong & Kildahl, Harriet & Ding, Yulong, 2022. "Mobile energy recovery and storage: Multiple energy-powered EVs and refuelling stations," Energy, Elsevier, vol. 257(C).
    20. Cui, Taowen & Zhao, Wanzhong & Wang, Chunyan, 2019. "Design optimization of vehicle EHPS system based on multi-objective genetic algorithm," Energy, Elsevier, vol. 179(C), pages 100-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8959-:d:985435. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.