IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v108y2017icp474-486.html
   My bibliography  Save this article

Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles

Author

Listed:
  • Neaimeh, Myriam
  • Salisbury, Shawn D.
  • Hill, Graeme A.
  • Blythe, Philip T.
  • Scoffield, Don R.
  • Francfort, James E.

Abstract

An appropriate charging infrastructure is one of the key aspects needed to support the mass adoption of battery electric vehicles (BEVs), and it is suggested that publically available fast chargers could play a key role in this infrastructure. As fast charging is a relatively new technology, very little research is conducted on the topic using real world datasets, and it is of utmost importance to measure actual usage of this technology and provide evidence on its importance to properly inform infrastructure planning. 90,000 fast charge events collected from the first large-scale roll-outs and evaluation projects of fast charging infrastructure in the UK and the US and 12,700 driving days collected from 35 BEVs in the UK were analysed. Using multiple regression analysis, we examined the relationship between daily driving distance and standard and fast charging and demonstrated that fast chargers are more influential. Fast chargers enabled using BEVs on journeys above their single-charge range that would have been impractical using standard chargers. Fast chargers could help overcome perceived and actual range barriers, making BEVs more attractive to future users. At current BEV market share, there is a vital need for policy support to accelerate the development of fast charge networks.

Suggested Citation

  • Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
  • Handle: RePEc:eee:enepol:v:108:y:2017:i:c:p:474-486
    DOI: 10.1016/j.enpol.2017.06.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517303877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.06.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Li & Shaffer, Brendan & Brown, Tim & Scott Samuelsen, G., 2015. "The optimization of DC fast charging deployment in California," Applied Energy, Elsevier, vol. 157(C), pages 111-122.
    2. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    3. Anders Jensen & Elisabetta Cherchi & Juan Dios Ortúzar, 2014. "A long panel survey to elicit variation in preferences and attitudes in the choice of electric vehicles," Transportation, Springer, vol. 41(5), pages 973-993, September.
    4. Langbroek, Joram H.M. & Franklin, Joel P. & Susilo, Yusak O., 2016. "The effect of policy incentives on electric vehicle adoption," Energy Policy, Elsevier, vol. 94(C), pages 94-103.
    5. Steinhilber, Simone & Wells, Peter & Thankappan, Samarthia, 2013. "Socio-technical inertia: Understanding the barriers to electric vehicles," Energy Policy, Elsevier, vol. 60(C), pages 531-539.
    6. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    7. Nilsson, Måns & Nykvist, Björn, 2016. "Governing the electric vehicle transition – Near term interventions to support a green energy economy," Applied Energy, Elsevier, vol. 179(C), pages 1360-1371.
    8. Willett Kempton, 2016. "Electric vehicles: Driving range," Nature Energy, Nature, vol. 1(9), pages 1-2, September.
    9. Gebauer, Fabian & Vilimek, Roman & Keinath, Andreas & Carbon, Claus-Christian, 2016. "Changing attitudes towards e-mobility by actively elaborating fast-charging technology," Technological Forecasting and Social Change, Elsevier, vol. 106(C), pages 31-36.
    10. Zachary A. Needell & James McNerney & Michael T. Chang & Jessika E. Trancik, 2016. "Potential for widespread electrification of personal vehicle travel in the United States," Nature Energy, Nature, vol. 1(9), pages 1-7, September.
    11. Matthews, Lindsay & Lynes, Jennifer & Riemer, Manuel & Del Matto, Tania & Cloet, Nicholas, 2017. "Do we have a car for you? Encouraging the uptake of electric vehicles at point of sale," Energy Policy, Elsevier, vol. 100(C), pages 79-88.
    12. Groemping, Ulrike, 2006. "Relative Importance for Linear Regression in R: The Package relaimpo," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 17(i01).
    13. Schroeder, Andreas & Traber, Thure, 2012. "The economics of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 43(C), pages 136-144.
    14. Madina, Carlos & Zamora, Inmaculada & Zabala, Eduardo, 2016. "Methodology for assessing electric vehicle charging infrastructure business models," Energy Policy, Elsevier, vol. 89(C), pages 284-293.
    15. Campbell, Amy R. & Ryley, Tim & Thring, Rob, 2012. "Identifying the early adopters of alternative fuel vehicles: A case study of Birmingham, United Kingdom," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1318-1327.
    16. Sadeghi-Barzani, Payam & Rajabi-Ghahnavieh, Abbas & Kazemi-Karegar, Hosein, 2014. "Optimal fast charging station placing and sizing," Applied Energy, Elsevier, vol. 125(C), pages 289-299.
    17. Calbick, K.S. & Gunton, Thomas, 2014. "Differences among OECD countries’ GHG emissions: Causes and policy implications," Energy Policy, Elsevier, vol. 67(C), pages 895-902.
    18. Patrick Jochem & Carsten Brendel & Melanie Reuter-Oppermann & Wolf Fichtner & Stefan Nickel, 2016. "Optimizing the allocation of fast charging infrastructure along the German autobahn," Journal of Business Economics, Springer, vol. 86(5), pages 513-535, July.
    19. Morrissey, Patrick & Weldon, Peter & O’Mahony, Margaret, 2016. "Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour," Energy Policy, Elsevier, vol. 89(C), pages 257-270.
    20. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    21. Silvia, Chris & Krause, Rachel M., 2016. "Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: An agent-based model," Energy Policy, Elsevier, vol. 96(C), pages 105-118.
    22. Tran, Martino & Banister, David & Bishop, Justin D.K. & McCulloch, Malcolm D., 2013. "Simulating early adoption of alternative fuel vehicles for sustainability," Technological Forecasting and Social Change, Elsevier, vol. 80(5), pages 865-875.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    2. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    3. Wee, Sherilyn & Coffman, Makena & Allen, Scott, 2020. "EV driver characteristics: Evidence from Hawaii," Transport Policy, Elsevier, vol. 87(C), pages 33-40.
    4. Berkeley, Nigel & Bailey, David & Jones, Andrew & Jarvis, David, 2017. "Assessing the transition towards Battery Electric Vehicles: A Multi-Level Perspective on drivers of, and barriers to, take up," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 320-332.
    5. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    6. Christos Karolemeas & Stefanos Tsigdinos & Panagiotis G. Tzouras & Alexandros Nikitas & Efthimios Bakogiannis, 2021. "Determining Electric Vehicle Charging Station Location Suitability: A Qualitative Study of Greek Stakeholders Employing Thematic Analysis and Analytical Hierarchy Process," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    7. Elena Higueras-Castillo & Sebastian Molinillo & J. Andres Coca-Stefaniak & Francisco Liébana-Cabanillas, 2020. "Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile," Sustainability, MDPI, vol. 12(11), pages 1-18, May.
    8. Zarazua de Rubens, Gerardo, 2019. "Who will buy electric vehicles after early adopters? Using machine learning to identify the electric vehicle mainstream market," Energy, Elsevier, vol. 172(C), pages 243-254.
    9. Makena Coffman & Scott Allen & Sherilyn Wee, 2018. "Who are Driving Electric Vehicles? An analysis of factors that affect EV adoption in Hawaii," Working Papers 2018-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    10. Yang, Shu & Cheng, Peng & Li, Jun & Wang, Shanyong, 2019. "Which group should policies target? Effects of incentive policies and product cognitions for electric vehicle adoption among Chinese consumers," Energy Policy, Elsevier, vol. 135(C).
    11. Ball, Christopher Stephen & Vögele, Stefan & Grajewski, Matthias & Kuckshinrichs, Wilhelm, 2021. "E-mobility from a multi-actor point of view: Uncertainties and their impacts," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    12. Patyal, Vishal Singh & Kumar, Ravi & Kushwah, Shiksha, 2021. "Modeling barriers to the adoption of electric vehicles: An Indian perspective," Energy, Elsevier, vol. 237(C).
    13. Moon-Koo Kim & Jong-Hyun Park & Kyungsoo Kim & Byoungkyu Park, 2020. "Identifying factors influencing the slow market diffusion of electric vehicles in Korea," Transportation, Springer, vol. 47(2), pages 663-688, April.
    14. Ma, Shao-Chao & Fan, Ying, 2020. "A deployment model of EV charging piles and its impact on EV promotion," Energy Policy, Elsevier, vol. 146(C).
    15. Lingling Shi & Suresh P. Sethi & Metin Çakanyıldırım, 2022. "Promoting electric vehicles: Reducing charging inconvenience and price via station and consumer subsidies," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4333-4350, December.
    16. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2017. "Electricity costs for a Level 3 electric vehicle fueling station integrated with a building," Applied Energy, Elsevier, vol. 191(C), pages 367-384.
    17. Chandra, Minal, 2022. "Investigating the impact of policies, socio-demography and national commitments on electric-vehicle demand: Cross-country study," Journal of Transport Geography, Elsevier, vol. 103(C).
    18. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    19. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. Qiu, Y.Q. & Zhou, P. & Sun, H.C., 2019. "Assessing the effectiveness of city-level electric vehicle policies in China," Energy Policy, Elsevier, vol. 130(C), pages 22-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:108:y:2017:i:c:p:474-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.