IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v225y2018icp611-621.html
   My bibliography  Save this article

Optimal sizing of energy storage systems under uncertain demand and generation

Author

Listed:
  • Bucciarelli, Martina
  • Paoletti, Simone
  • Vicino, Antonio

Abstract

Energy storage systems have been recently recognized as an effective solution to tackle power imbalances and voltage violations faced by distribution system operators due to the increasing penetration of low carbon technologies. To fully exploit their benefits, optimal sizing of these devices is a key problem at the planning stage. This paper considers the sizing problem of the energy storage systems installed in a distribution network with the aim, e.g., of preventing over- and undervoltages. In order to accommodate uncertainty on future realizations of demand and generation, the optimal sizing problem is formulated in a two-stage stochastic framework, where the first stage decision involves the storage sizes, while the second stage problem provides the optimal storage control policy for given demand and generation profiles. By taking a scenario-based approach, the two-stage problem is approximated in the form of a single multi-scenario, multi-period optimal power flow, whose size, however, becomes computationally intractable as the number of scenarios grows. To overcome this issue, the paper presents a procedure to compute upper- and lower bounds to the optimal cost of the approximate problem. Moreover, when the objective is to minimize the total installed storage capacity, an iterative algorithm based on scenario reduction is proposed, which converges to the optimal solution of the approximate problem. The whole procedure is tested on the topology of the IEEE 37-bus test network, considering scenarios of demand and generation which feature over- and undervoltages in the absence of storage devices.

Suggested Citation

  • Bucciarelli, Martina & Paoletti, Simone & Vicino, Antonio, 2018. "Optimal sizing of energy storage systems under uncertain demand and generation," Applied Energy, Elsevier, vol. 225(C), pages 611-621.
  • Handle: RePEc:eee:appene:v:225:y:2018:i:c:p:611-621
    DOI: 10.1016/j.apenergy.2018.03.153
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918305002
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.03.153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sardi, Junainah & Mithulananthan, N. & Gallagher, M. & Hung, Duong Quoc, 2017. "Multiple community energy storage planning in distribution networks using a cost-benefit analysis," Applied Energy, Elsevier, vol. 190(C), pages 453-463.
    2. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    3. Long, Chao & Wu, Jianzhong & Thomas, Lee & Jenkins, Nick, 2016. "Optimal operation of soft open points in medium voltage electrical distribution networks with distributed generation," Applied Energy, Elsevier, vol. 184(C), pages 427-437.
    4. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    5. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    6. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    7. Antonio J. Conejo & Miguel Carrión & Juan M. Morales, 2010. "Decision Making Under Uncertainty in Electricity Markets," International Series in Operations Research and Management Science, Springer, number 978-1-4419-7421-1, April.
    8. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    9. Motalleb, Mahdi & Reihani, Ehsan & Ghorbani, Reza, 2016. "Optimal placement and sizing of the storage supporting transmission and distribution networks," Renewable Energy, Elsevier, vol. 94(C), pages 651-659.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panda, Deepak Kumar & Das, Saptarshi, 2021. "Economic operational analytics for energy storage placement at different grid locations and contingency scenarios with stochastic wind profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Shi, Jing & Xu, Ying & Liao, Meng & Guo, Shuqiang & Li, Yuanyuan & Ren, Li & Su, Rongyu & Li, Shujian & Zhou, Xiao & Tang, Yuejin, 2019. "Integrated design method for superconducting magnetic energy storage considering the high frequency pulse width modulation pulse voltage on magnet," Applied Energy, Elsevier, vol. 248(C), pages 1-17.
    3. Peker, Meltem & Kocaman, Ayse Selin & Kara, Bahar Y., 2018. "Benefits of transmission switching and energy storage in power systems with high renewable energy penetration," Applied Energy, Elsevier, vol. 228(C), pages 1182-1197.
    4. Hannie Zang & JongWon Kim, 2021. "Reinforcement Learning Based Peer-to-Peer Energy Trade Management Using Community Energy Storage in Local Energy Market," Energies, MDPI, vol. 14(14), pages 1-18, July.
    5. Lee, J. & Bérard, Jean-Philippe & Razeghi, G. & Samuelsen, S., 2020. "Maximizing PV hosting capacity of distribution feeder microgrid," Applied Energy, Elsevier, vol. 261(C).
    6. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Lu, Xinhui, 2019. "Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting," Energy, Elsevier, vol. 171(C), pages 1053-1065.
    7. Nayeem Chowdhury & Fabrizio Pilo & Giuditta Pisano, 2020. "Optimal Energy Storage System Positioning and Sizing with Robust Optimization," Energies, MDPI, vol. 13(3), pages 1-20, January.
    8. Trivedi, Anupam & Chong Aih, Hau & Srinivasan, Dipti, 2020. "A stochastic cost–benefit analysis framework for allocating energy storage system in distribution network for load leveling," Applied Energy, Elsevier, vol. 280(C).
    9. Hiroki Aoyagi & Ryota Isomura & Paras Mandal & Narayanan Krishna & Tomonobu Senjyu & Hiroshi Takahashi, 2019. "Optimum Capacity and Placement of Storage Batteries Considering Photovoltaics," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
    10. Anju Yadav & Nand Kishor & Richa Negi, 2023. "Bus Voltage Violations under Different Solar Radiation Profiles and Load Changes with Optimally Placed and Sized PV Systems," Energies, MDPI, vol. 16(2), pages 1-23, January.
    11. Mortaz, Ebrahim & Vinel, Alexander & Dvorkin, Yury, 2019. "An optimization model for siting and sizing of vehicle-to-grid facilities in a microgrid," Applied Energy, Elsevier, vol. 242(C), pages 1649-1660.
    12. Bozorgavari, Seyed Aboozar & Aghaei, Jamshid & Pirouzi, Sasan & Nikoobakht, Ahmad & Farahmand, Hossein & Korpås, Magnus, 2020. "Robust planning of distributed battery energy storage systems in flexible smart distribution networks: A comprehensive study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    13. Goodarzi, Mostafa & Li, Qifeng, 2022. "Evaluate the capacity of electricity-driven water facilities in small communities as virtual energy storage," Applied Energy, Elsevier, vol. 309(C).
    14. Rasheed Abdulkader & Hayder M. A. Ghanimi & Pankaj Dadheech & Meshal Alharbi & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly & Dhivya Swaminathan & Sudhakar Sengan, 2023. "Soft Computing in Smart Grid with Decentralized Generation and Renewable Energy Storage System Planning," Energies, MDPI, vol. 16(6), pages 1-24, March.
    15. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Pickering, Bryn & Choudhary, Ruchi, 2021. "Quantifying resilience in energy systems with out-of-sample testing," Applied Energy, Elsevier, vol. 285(C).
    17. Zifa Liu & Jieyu Li & Yunyang Liu & Puyang Yu & Junteng Shao, 2022. "Collaborative Optimized Operation Model of Multi-Character Distribution Network Considering Multiple Uncertain Factors and Demand Response," Energies, MDPI, vol. 15(12), pages 1-19, June.
    18. Arul Rajagopalan & Dhivya Swaminathan & Meshal Alharbi & Sudhakar Sengan & Oscar Danilo Montoya & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly, 2022. "Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods," Energies, MDPI, vol. 15(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Zhao & Xiaonan Wang & Jinsheng Chu, 2022. "The Strategies for Increasing Grid-Integrated Share of Renewable Energy with Energy Storage and Existing Coal Fired Power Generation in China," Energies, MDPI, vol. 15(13), pages 1-18, June.
    2. Das, Choton K. & Bass, Octavian & Kothapalli, Ganesh & Mahmoud, Thair S. & Habibi, Daryoush, 2018. "Optimal placement of distributed energy storage systems in distribution networks using artificial bee colony algorithm," Applied Energy, Elsevier, vol. 232(C), pages 212-228.
    3. Panda, Deepak Kumar & Das, Saptarshi, 2021. "Economic operational analytics for energy storage placement at different grid locations and contingency scenarios with stochastic wind profiles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Saboori, Hedayat & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh & Dehghan, Shahab, 2017. "Energy storage planning in electric power distribution networks – A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1108-1121.
    5. Das, Choton K. & Bass, Octavian & Mahmoud, Thair S. & Kothapalli, Ganesh & Mousavi, Navid & Habibi, Daryoush & Masoum, Mohammad A.S., 2019. "Optimal allocation of distributed energy storage systems to improve performance and power quality of distribution networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Hannan, M.A. & Faisal, M. & Jern Ker, Pin & Begum, R.A. & Dong, Z.Y. & Zhang, C., 2020. "Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Liu, Shuai & Wei, Li & Wang, Huai, 2020. "Review on reliability of supercapacitors in energy storage applications," Applied Energy, Elsevier, vol. 278(C).
    8. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Chowdhury, Jahedul Islam & Balta-Ozkan, Nazmiye & Goglio, Pietro & Hu, Yukun & Varga, Liz & McCabe, Leah, 2020. "Techno-environmental analysis of battery storage for grid level energy services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    11. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Odukomaiya, Adewale & Abu-Heiba, Ahmad & Graham, Samuel & Momen, Ayyoub M., 2018. "Experimental and analytical evaluation of a hydro-pneumatic compressed-air Ground-Level Integrated Diverse Energy Storage (GLIDES) system," Applied Energy, Elsevier, vol. 221(C), pages 75-85.
    13. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    14. Odukomaiya, Adewale & Abu-Heiba, Ahmad & Gluesenkamp, Kyle R. & Abdelaziz, Omar & Jackson, Roderick K. & Daniel, Claus & Graham, Samuel & Momen, Ayyoub M., 2016. "Thermal analysis of near-isothermal compressed gas energy storage system," Applied Energy, Elsevier, vol. 179(C), pages 948-960.
    15. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    16. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.
    17. Zhao, Chunyang & Andersen, Peter Bach & Træholt, Chresten & Hashemi, Seyedmostafa, 2023. "Grid-connected battery energy storage system: a review on application and integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    18. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    19. Schmitz, William Ismael & Schmitz, Magdiel & Canha, Luciane Neves & Garcia, Vinícius Jacques, 2020. "Proactive home energy storage management system to severe weather scenarios," Applied Energy, Elsevier, vol. 279(C).
    20. Daghi, Majid & Sedghi, Mahdi & Ahmadian, Ali & Aliakbar-Golkar, Masoud, 2016. "Factor analysis based optimal storage planning in active distribution network considering different battery technologies," Applied Energy, Elsevier, vol. 183(C), pages 456-469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:225:y:2018:i:c:p:611-621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.