IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v102y2016icp199-215.html
   My bibliography  Save this article

A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm

Author

Listed:
  • Ahmadigorji, Masoud
  • Amjady, Nima

Abstract

In this paper, a new model for MEPDN (multiyear expansion planning of distribution networks) is proposed. By solving this model, the optimal expansion scheme of primary (i.e. medium voltage) distribution network including the reinforcement pattern of primary feeders as well as location and size of DG (distributed generators) during an ascertained planning period is determined. Furthermore, the time-based feature of proposed model allows it to specify the investments/reinforcements time (i.e. year). Moreover, a minimum load shedding-based analytical approach for optimizing the network's reliability is introduced. The associated objective function of proposed model is minimizing the total investment and operation costs. To solve the formulated MEPDN model as a complex multi-dimensional optimization problem, a new evolutionary algorithm-based solution method called BCSSO (Binary Chaotic Shark Smell Optimization) is presented. The effectiveness of the proposed MEPDN model and solution approach is illustrated by applying them on two widely-used test cases including 12-bus and 33-bus distribution network and comparing the acquired results with the results of other solution methods.

Suggested Citation

  • Ahmadigorji, Masoud & Amjady, Nima, 2016. "A multiyear DG-incorporated framework for expansion planning of distribution networks using binary chaotic shark smell optimization algorithm," Energy, Elsevier, vol. 102(C), pages 199-215.
  • Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:199-215
    DOI: 10.1016/j.energy.2016.02.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216301505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    2. Soroudi, Alireza & Ehsan, Mehdi, 2010. "A distribution network expansion planning model considering distributed generation options and techo-economical issues," Energy, Elsevier, vol. 35(8), pages 3364-3374.
    3. Aghaei, Jamshid & Muttaqi, Kashem M. & Azizivahed, Ali & Gitizadeh, Mohsen, 2014. "Distribution expansion planning considering reliability and security of energy using modified PSO (Particle Swarm Optimization) algorithm," Energy, Elsevier, vol. 65(C), pages 398-411.
    4. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    5. Zio, E. & Golea, L.R. & Sansavini, G., 2012. "Optimizing protections against cascades in network systems: A modified binary differential evolution algorithm," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 72-83.
    6. Doagou-Mojarrad, Hasan & Gharehpetian, G.B. & Rastegar, H. & Olamaei, Javad, 2013. "Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm," Energy, Elsevier, vol. 54(C), pages 129-138.
    7. Zangiabadi, Mansoureh & Feuillet, Rene & Lesani, Hamid & Hadj-Said, Nouredine & Kvaløy, Jan T., 2011. "Assessing the performance and benefits of customer distributed generation developers under uncertainties," Energy, Elsevier, vol. 36(3), pages 1703-1712.
    8. Soroudi, Alireza & Ehsan, Mehdi & Zareipour, Hamidreza, 2011. "A practical eco-environmental distribution network planning model including fuel cells and non-renewable distributed energy resources," Renewable Energy, Elsevier, vol. 36(1), pages 179-188.
    9. Gitizadeh, Mohsen & Vahed, Ali Azizi & Aghaei, Jamshid, 2013. "Multistage distribution system expansion planning considering distributed generation using hybrid evolutionary algorithms," Applied Energy, Elsevier, vol. 101(C), pages 655-666.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadi, Abdollah & Charwand, Mansour & Siano, Pierluigi & Nezhad, Ali Esmaeel & Sarno, Debora & Gitizadeh, Mohsen & Raeisi, Fatima, 2016. "A novel two-stage stochastic programming model for uncertainty characterization in short-term optimal strategy for a distribution company," Energy, Elsevier, vol. 117(P1), pages 1-9.
    2. Canizes, Bruno & Soares, João & Lezama, Fernando & Silva, Cátia & Vale, Zita & Corchado, Juan M., 2019. "Optimal expansion planning considering storage investment and seasonal effect of demand and renewable generation," Renewable Energy, Elsevier, vol. 138(C), pages 937-954.
    3. Mokryani, Geev & Hu, Yim Fun & Papadopoulos, Panagiotis & Niknam, Taher & Aghaei, Jamshid, 2017. "Deterministic approach for active distribution networks planning with high penetration of wind and solar power," Renewable Energy, Elsevier, vol. 113(C), pages 942-951.
    4. Longda Wang & Xingcheng Wang & Zhao Sheng & Senkui Lu, 2020. "Multi-Objective Shark Smell Optimization Algorithm Using Incorporated Composite Angle Cosine for Automatic Train Operation," Energies, MDPI, vol. 13(3), pages 1-25, February.
    5. Monadi, Mehdi & Zamani, M. Amin & Koch-Ciobotaru, Cosmin & Candela, Jose Ignacio & Rodriguez, Pedro, 2016. "A communication-assisted protection scheme for direct-current distribution networks," Energy, Elsevier, vol. 109(C), pages 578-591.
    6. Moradijoz, Mahnaz & Moradijoz, Saeed & Moghaddam, Mohsen Parsa & Haghifam, Mahmoud-Reza, 2020. "Flexibility enhancement in active distribution networks through a risk-based optimal placement of sectionalizing switches," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    7. Mandhir Kumar Verma & Vivekananda Mukherjee & Vinod Kumar Yadav & Santosh Ghosh, 2020. "Constraints for effective distribution network expansion planning: an ample review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 531-546, June.
    8. Mulusew Ayalew & Baseem Khan & Issaias Giday & Om Prakash Mahela & Mahdi Khosravy & Neeraj Gupta & Tomonobu Senjyu, 2022. "Integration of Renewable Based Distributed Generation for Distribution Network Expansion Planning," Energies, MDPI, vol. 15(4), pages 1-17, February.
    9. Huang, Yalin & Söder, Lennart, 2017. "Evaluation of economic regulation in distribution systems with distributed generation," Energy, Elsevier, vol. 126(C), pages 192-201.
    10. Rastgou, Abdollah & Moshtagh, Jamal & Bahramara, Salah, 2018. "Improved harmony search algorithm for electrical distribution network expansion planning in the presence of distributed generators," Energy, Elsevier, vol. 151(C), pages 178-202.
    11. Lin Wang & Anke Xue, 2021. "Equivalent Modeling of Microgrids Based on Optimized Broad Learning System," Energies, MDPI, vol. 14(23), pages 1-11, November.
    12. Moradijoz, M. & Moghaddam, M. Parsa & Haghifam, M.R., 2018. "A flexible active distribution system expansion planning model: A risk-based approach," Energy, Elsevier, vol. 145(C), pages 442-457.
    13. dos Santos, L.L.C. & Canha, L.N. & Bernardon, D.P., 2018. "Projection of the diffusion of photovoltaic systems in residential low voltage consumers," Renewable Energy, Elsevier, vol. 116(PA), pages 384-401.
    14. Arul Rajagopalan & Dhivya Swaminathan & Meshal Alharbi & Sudhakar Sengan & Oscar Danilo Montoya & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly, 2022. "Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods," Energies, MDPI, vol. 15(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    2. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    3. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    4. Ahmadigorji, Masoud & Amjady, Nima, 2015. "Optimal dynamic expansion planning of distribution systems considering non-renewable distributed generation using a new heuristic double-stage optimization solution approach," Applied Energy, Elsevier, vol. 156(C), pages 655-665.
    5. J. Rajalakshmi & S. Durairaj, 2021. "Application of multi-objective optimization algorithm for siting and sizing of distributed generations in distribution networks," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 267-289, February.
    6. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah, 2015. "An efficient scenario-based stochastic programming for optimal planning of combined heat, power, and hydrogen production of molten carbonate fuel cell power plants," Energy, Elsevier, vol. 83(C), pages 734-748.
    7. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    8. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    9. Singh, Bindeshwar & Pal, Charitra & Mukherjee, V. & Tiwari, Prabhakar & Yadav, Manish Kumar, 2017. "Distributed generation planning from power system performances viewpoints: A taxonomical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1472-1492.
    10. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J., 2015. "Assessing low voltage network constraints in distributed energy resources planning," Energy, Elsevier, vol. 84(C), pages 783-793.
    11. Das, Bikash & Mukherjee, V. & Das, Debapriya, 2019. "Optimum DG placement for known power injection from utility/substation by a novel zero bus load flow approach," Energy, Elsevier, vol. 175(C), pages 228-249.
    12. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    13. Mandhir Kumar Verma & Vivekananda Mukherjee & Vinod Kumar Yadav & Santosh Ghosh, 2020. "Constraints for effective distribution network expansion planning: an ample review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 531-546, June.
    14. Rastgou, Abdollah & Moshtagh, Jamal & Bahramara, Salah, 2018. "Improved harmony search algorithm for electrical distribution network expansion planning in the presence of distributed generators," Energy, Elsevier, vol. 151(C), pages 178-202.
    15. Sani Hassan, Abubakar & Cipcigan, Liana & Jenkins, Nick, 2018. "Impact of optimised distributed energy resources on local grid constraints," Energy, Elsevier, vol. 142(C), pages 878-895.
    16. Jordehi, A. Rezaee, 2015. "Optimisation of electric distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1088-1100.
    17. Tolabi, Hajar Bagheri & Ali, Mohd Hasan & Shahrin Bin Md Ayob, & Rizwan, M., 2014. "Novel hybrid fuzzy-Bees algorithm for optimal feeder multi-objective reconfiguration by considering multiple-distributed generation," Energy, Elsevier, vol. 71(C), pages 507-515.
    18. Ji, Ling & Huang, Guo-He & Xie, Yu-Lei & Niu, Dong-Xiao & Song, Yi-Hang, 2017. "Explicit cost-risk tradeoff for renewable portfolio standard constrained regional power system expansion: A case study of Guangdong Province, China," Energy, Elsevier, vol. 131(C), pages 125-136.
    19. Ramdhan Halid Siregar & Yuwaldi Away & Tarmizi & Akhyar, 2023. "Minimizing Power Losses for Distributed Generation (DG) Placements by Considering Voltage Profiles on Distribution Lines for Different Loads Using Genetic Algorithm Methods," Energies, MDPI, vol. 16(14), pages 1-25, July.
    20. Ghasemi, Mojtaba & Aghaei, Jamshid & Akbari, Ebrahim & Ghavidel, Sahand & Li, Li, 2016. "A differential evolution particle swarm optimizer for various types of multi-area economic dispatch problems," Energy, Elsevier, vol. 107(C), pages 182-195.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:199-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.