IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p1825-d1344145.html
   My bibliography  Save this article

Performance Assessment User Interface to Enhance the Utilization of Grid-Connected Residential PV Systems

Author

Listed:
  • Faris E. Alfaris

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

  • Faris Almutairi

    (Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia)

Abstract

The share of renewable energy resources in modern electrical power networks is increasing in order to meet environmental and technical targets. Consequently, energy researchers and power providers have been focusing on optimizing the integration of renewable energy into existing power grids. One of the most significant growing applications of renewable energy resources is residential photovoltaic (PV) systems; therefore, this paper discusses a new methodology to enhance the utilization of small-scale and medium-scale PV systems. For this purpose, this study proposes a user-friendly interface to help novice users optimally design their own PV projects with the highest possible utilization of the installed panels. Unlike the commercially available design tools, the proposed interface in this paper provides a higher degree-of-freedom computational process, as well as the option of improving the generated power quality, while maintaining the simplicity of the required tools and inputs. The proposed methodology mainly relies on a deep mathematical analysis considering different generation and consumption aspects, such as the load profile, time of usage, ambient temperature, PV system specifications and location. Furthermore, the mechanism of integrating a small portion of Energy Storage Systems (ESSs), to improve the quality of the extracted power, is also discussed in this study. The user interface provides the ability to estimate optimal ESS usage versus the estimated price when energy is urgently required. The case study was conducted in Riyadh, Saudi Arabia, and the results showed an essential improvement in the efficiency, solar fraction and power quality of the studied PV project, which can be extended to other home and distributed generation (DG) scales.

Suggested Citation

  • Faris E. Alfaris & Faris Almutairi, 2024. "Performance Assessment User Interface to Enhance the Utilization of Grid-Connected Residential PV Systems," Sustainability, MDPI, vol. 16(5), pages 1-26, February.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1825-:d:1344145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/1825/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/1825/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinhua Zhang & Liding Zhu & Shengchao Zhao & Jie Yan & Lingling Lv, 2023. "Optimal Configuration of Energy Storage Systems in High PV Penetrating Distribution Network," Energies, MDPI, vol. 16(5), pages 1-21, February.
    2. Sungha Yoon & Jintae Park & Chaeyoung Lee & Sangkwon Kim & Yongho Choi & Soobin Kwak & Hyundong Kim & Junseok Kim, 2023. "Optimal Orientation of Solar Panels for Multi-Apartment Buildings," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    3. Djamila Rekioua, 2023. "Energy Storage Systems for Photovoltaic and Wind Systems: A Review," Energies, MDPI, vol. 16(9), pages 1-26, May.
    4. Arul Rajagopalan & Dhivya Swaminathan & Meshal Alharbi & Sudhakar Sengan & Oscar Danilo Montoya & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly, 2022. "Modernized Planning of Smart Grid Based on Distributed Power Generations and Energy Storage Systems Using Soft Computing Methods," Energies, MDPI, vol. 15(23), pages 1-18, November.
    5. Habib Ur Rehman & Arif Hussain & Waseem Haider & Sayyed Ahmad Ali & Syed Ali Abbas Kazmi & Muhammad Huzaifa, 2023. "Optimal Planning of Solar Photovoltaic (PV) and Wind-Based DGs for Achieving Techno-Economic Objectives across Various Load Models," Energies, MDPI, vol. 16(5), pages 1-38, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud M. Badr & Mohamed I. Ibrahem & Hisham A. Kholidy & Mostafa M. Fouda & Muhammad Ismail, 2023. "Review of the Data-Driven Methods for Electricity Fraud Detection in Smart Metering Systems," Energies, MDPI, vol. 16(6), pages 1-18, March.
    2. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    3. M. M. Hasan & Shakhawat Hossain & M. Mofijur & Zobaidul Kabir & Irfan Anjum Badruddin & T. M. Yunus Khan & Esam Jassim, 2023. "Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions," Energies, MDPI, vol. 16(18), pages 1-30, September.
    4. Md. Tanjil Sarker & Mohammed Hussein Saleh Mohammed Haram & Siow Jat Shern & Gobbi Ramasamy & Fahmid Al Farid, 2024. "Readiness of Malaysian PV System to Utilize Energy Storage System with Second-Life Electric Vehicle Batteries," Energies, MDPI, vol. 17(16), pages 1-23, August.
    5. Ziqi Liu & Tingting Su & Zhiying Quan & Quanli Wu & Yu Wang, 2023. "Review on the Optimal Configuration of Distributed Energy Storage," Energies, MDPI, vol. 16(14), pages 1-17, July.
    6. Mansour Selseleh Jonban & Luis Romeral & Elyas Rakhshani & Mousa Marzband, 2023. "Flexible Smart Energy-Management Systems Using an Online Tendering Process Framework for Microgrids," Energies, MDPI, vol. 16(13), pages 1-19, June.
    7. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Masahiro Furukakoi & Paras Mandal & Tomonobu Senjyu, 2023. "Integrated Multi-Criteria Planning for Resilient Renewable Energy-Based Microgrid Considering Advanced Demand Response and Uncertainty," Energies, MDPI, vol. 16(19), pages 1-25, September.
    8. C Popa, 2023. "Comprehensive analysis of offshore wind-photovoltaic hybrid systems: unveiling state-of-the-art autonomous components for maritime applications," Technium, Technium Science, vol. 19(1), pages 50-58.
    9. Chunchao Wu & Yonghong Zhao & Wulin Li & Jianjun Fan & Haixiang Xu & Dingkun Yuan & Zhongqian Ling, 2024. "Layered Operation Optimization Methods for Concentrated Solar Power (CSP) Technology and Multi-Energy Flow Coupling Systems," Energies, MDPI, vol. 17(24), pages 1-19, December.
    10. Dhivya Swaminathan & Arul Rajagopalan & Oscar Danilo Montoya & Savitha Arul & Luis Fernando Grisales-Noreña, 2023. "Distribution Network Reconfiguration Based on Hybrid Golden Flower Algorithm for Smart Cities Evolution," Energies, MDPI, vol. 16(5), pages 1-24, March.
    11. Artur Pawelec & Agnieszka Pawlak & Aleksandra Pyk & Paweł Grzegorz Kossakowski, 2024. "Research on the Possibilities of Expanding the Photovoltaic Installation in the Microgrid Structure of Kielce University of Technology Using Digital Twin Technology," Sustainability, MDPI, vol. 16(21), pages 1-14, October.
    12. João Fausto L. de Oliveira & Paulo S. G. de Mattos Neto & Hugo Valadares Siqueira & Domingos S. de O. Santos & Aranildo R. Lima & Francisco Madeiro & Douglas A. P. Dantas & Mariana de Morais Cavalcant, 2023. "Forecasting Methods for Photovoltaic Energy in the Scenario of Battery Energy Storage Systems: A Comprehensive Review," Energies, MDPI, vol. 16(18), pages 1-20, September.
    13. Rasheed Abdulkader & Hayder M. A. Ghanimi & Pankaj Dadheech & Meshal Alharbi & Walid El-Shafai & Mostafa M. Fouda & Moustafa H. Aly & Dhivya Swaminathan & Sudhakar Sengan, 2023. "Soft Computing in Smart Grid with Decentralized Generation and Renewable Energy Storage System Planning," Energies, MDPI, vol. 16(6), pages 1-24, March.
    14. Hasan Hamdan & Sharul Sham Dol & Abdelrahman Hosny Gomaa & Aghyad Belal Al Tahhan & Ahmad Al Ramahi & Haya Fares Turkmani & Mohammad Alkhedher & Rahaf Ajaj, 2023. "Experimental and Numerical Study of Novel Vortex Bladeless Wind Turbine with an Economic Feasibility Analysis and Investigation of Environmental Benefits," Energies, MDPI, vol. 17(1), pages 1-30, December.
    15. Wallisson C. Nogueira & Lina P. Garcés Negrete & Jesús M. López-Lezama, 2023. "Optimal Allocation and Sizing of Distributed Generation Using Interval Power Flow," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    16. Arkadiusz Małek & Andrzej Marciniak & Tomasz Bednarczyk, 2024. "Probabilistic Analysis of Electricity Production from a Photovoltaic–Wind Energy Mix for Sustainable Transport Needs," Sustainability, MDPI, vol. 16(23), pages 1-23, November.
    17. Julio Manuel de Luis-Ruiz & Benito Ramiro Salas-Menocal & Raúl Pereda-García & Rubén Pérez-Álvarez & Javier Sedano-Cibrián & Carolina Ruiz-Fernández, 2024. "Optimal Location of Solar Photovoltaic Plants Using Geographic Information Systems and Multi-Criteria Analysis," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
    18. Hasan Dinçer & Serhat Yüksel & Bijan Abadi, 0000. "Techno-economic Assessment of Wind Energy Storage Technologies via Decision-Making Modelling," Proceedings of Economics and Finance Conferences 14716414, International Institute of Social and Economic Sciences.
    19. Zifen Han & Yun Zhang & Biao Tian & Yi Fan & Chao Zhang & Huijuan Wu, 2024. "Cooperative Control Strategy of Optical Storage System Based on an Alternating Sequence Filter," Energies, MDPI, vol. 17(23), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:1825-:d:1344145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.