IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5722-d633345.html
   My bibliography  Save this article

Energy Management System for Hybrid PV/Wind/Battery/Fuel Cell in Microgrid-Based Hydrogen and Economical Hybrid Battery/Super Capacitor Energy Storage

Author

Listed:
  • Younes Sahri

    (Laboratoire de Technologie Industrielle et de l’Information (LTII), Faculté de Technologie, Université de Bejaia, Bejaia 06000, Algeria)

  • Youcef Belkhier

    (Laboratoire de Technologie Industrielle et de l’Information (LTII), Faculté de Technologie, Université de Bejaia, Bejaia 06000, Algeria)

  • Salah Tamalouzt

    (Laboratoire de Technologie Industrielle et de l’Information (LTII), Faculté de Technologie, Université de Bejaia, Bejaia 06000, Algeria)

  • Nasim Ullah

    (Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Rabindra Nath Shaw

    (Department of Electronics & Communication Engineering, Galgotias University, Greater Noida 201306, India)

  • Md. Shahariar Chowdhury

    (Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90112, Thailand)

  • Kuaanan Techato

    (Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90112, Thailand
    Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai 90112, Thailand)

Abstract

The present work addresses the modelling, control, and simulation of a microgrid integrated wind power system with Doubly Fed Induction Generator (DFIG) using a hybrid energy storage system. In order to improve the quality of the waveforms (voltages and currents) supplied to the grid, instead of a two level-inverter, the rotor of the DFIG is supplied using a three-level inverter. A new adaptive algorithm based on combined Direct Reactive Power Control (DRPC) and fuzzy logic controls techniques is applied to the proposed topology. In this work, two topologies are proposed. In the first one, the active power injected into the grid is smoothened by using an economical hybrid battery and supercapacitor energy storage system. However, in the second one, the excess wind energy is used to produce and store the hydrogen, and then a solid oxide fuel cell system (SOFC) is utilized to regenerate electricity by using the stored hydrogen when there is not enough wind energy. To avoid overcharging, deep discharging of batteries, to mitigate fluctuations due to wind speed variations, and to fulfil the requirement of the load profile, a power management algorithm is implemented. This algorithm ensures smooth output power in the first topology and service continuity in the second. The modelling and simulation results are presented and analysed using Matlab/Simulink.

Suggested Citation

  • Younes Sahri & Youcef Belkhier & Salah Tamalouzt & Nasim Ullah & Rabindra Nath Shaw & Md. Shahariar Chowdhury & Kuaanan Techato, 2021. "Energy Management System for Hybrid PV/Wind/Battery/Fuel Cell in Microgrid-Based Hydrogen and Economical Hybrid Battery/Super Capacitor Energy Storage," Energies, MDPI, vol. 14(18), pages 1-32, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5722-:d:633345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5722/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5722/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krzysztof Kołek & Andrzej Firlit & Krzysztof Piątek & Krzysztof Chmielowiec, 2021. "Analysis of the Practical Implementation of Flicker Measurement Coprocessor for AMI Meters," Energies, MDPI, vol. 14(6), pages 1-17, March.
    2. Guney, Mukrimin Sevket & Tepe, Yalcin, 2017. "Classification and assessment of energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1187-1197.
    3. Ammar Armghan & Muhammad Kashif Azeem & Hammad Armghan & Ming Yang & Fayadh Alenezi & Mudasser Hassan, 2021. "Dynamical Operation Based Robust Nonlinear Control of DC Microgrid Considering Renewable Energy Integration," Energies, MDPI, vol. 14(13), pages 1-23, July.
    4. Ma, Tao & Yang, Hongxing & Lu, Lin, 2015. "Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems," Applied Energy, Elsevier, vol. 153(C), pages 56-62.
    5. Tascikaraoglu, A. & Uzunoglu, M. & Vural, B. & Erdinc, O., 2011. "Power quality assessment of wind turbines and comparison with conventional legal regulations: A case study in Turkey," Applied Energy, Elsevier, vol. 88(5), pages 1864-1872, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eunsung Oh, 2022. "Fair Virtual Energy Storage System Operation for Smart Energy Communities," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    2. Stanisław Jaworski & Mariola Chrzanowska & Monika Zielińska-Sitkiewicz & Robert Pietrzykowski & Aleksandra Jezierska-Thöle & Piotr Zielonka, 2023. "Evaluating the Progress of Renewable Energy Sources in Poland: A Multidimensional Analysis," Energies, MDPI, vol. 16(18), pages 1-21, September.
    3. Chun Yang & Shijun You & Yingzhu Han & Xuan Wang & Ji Li & Lu Wang, 2023. "Research on Optimization Method of Integrated Energy System Network Planning," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    4. Florian Rzepka & Philipp Hematty & Mano Schmitz & Julia Kowal, 2023. "Neural Network Architecture for Determining the Aging of Stationary Storage Systems in Smart Grids," Energies, MDPI, vol. 16(17), pages 1-20, August.
    5. Prabu Subramani & Sugadev Mani & Wen-Cheng Lai & Dineshkumar Ramamurthy, 2022. "Sustainable Energy Management and Control for Variable Load Conditions Using Improved Mayfly Optimization," Sustainability, MDPI, vol. 14(11), pages 1-22, May.
    6. M. Usman Saleem & Mustafa Shakir & M. Rehan Usman & M. Hamza Tahir Bajwa & Noman Shabbir & Payam Shams Ghahfarokhi & Kamran Daniel, 2023. "Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-21, June.
    7. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    8. Younes Sahri & Salah Tamalouzt & Sofia Lalouni Belaid & Seddik Bacha & Nasim Ullah & Ahmad Aziz Al Ahamdi & Ali Nasser Alzaed, 2021. "Advanced Fuzzy 12 DTC Control of Doubly Fed Induction Generator for Optimal Power Extraction in Wind Turbine System under Random Wind Conditions," Sustainability, MDPI, vol. 13(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Sun, Bo & Li, Hailong & Sun, Qie & Wennersten, Ronald, 2020. "An improved min-max power dispatching method for integration of variable renewable energy," Applied Energy, Elsevier, vol. 276(C).
    2. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    3. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    4. Ayman A. Aly & Bassem F. Felemban & Ardashir Mohammadzadeh & Oscar Castillo & Andrzej Bartoszewicz, 2021. "Frequency Regulation System: A Deep Learning Identification, Type-3 Fuzzy Control and LMI Stability Analysis," Energies, MDPI, vol. 14(22), pages 1-21, November.
    5. Chen, Hao & Wang, Huanran & Li, Ruixiong & Sun, Hao & Ge, Gangqiang & Ling, Lanning, 2022. "Experimental and analytical investigation of near-isothermal pumped hydro-compressed air energy storage system," Energy, Elsevier, vol. 249(C).
    6. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    7. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    8. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    10. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    11. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    12. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    13. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    14. Khor, J.O. & Sze, J.Y. & Li, Y. & Romagnoli, A., 2020. "Overcharging of a cascaded packed bed thermal energy storage: Effects and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    15. Moioli, Emanuele & Mutschler, Robin & Züttel, Andreas, 2019. "Renewable energy storage via CO2 and H2 conversion to methane and methanol: Assessment for small scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 497-506.
    16. Karaca, Ali Erdogan & Dincer, Ibrahim & Nitefor, Michael, 2023. "A new renewable energy system integrated with compressed air energy storage and multistage desalination," Energy, Elsevier, vol. 268(C).
    17. Boynuegri, A.R. & Vural, B. & Tascikaraoglu, A. & Uzunoglu, M. & Yumurtacı, R., 2012. "Voltage regulation capability of a prototype Static VAr Compensator for wind applications," Applied Energy, Elsevier, vol. 93(C), pages 422-431.
    18. Diego Rodríguez Rodríguez, 2019. "Los costes de la transición: las centrales de bombeo y el gas en sistemas aislados," Studies on the Spanish Economy eee2019-13, FEDEA.
    19. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    20. Reveles-Miranda, María & Ramirez-Rivera, Victor & Pacheco-Catalán, Daniella, 2024. "Hybrid energy storage: Features, applications, and ancillary benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5722-:d:633345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.