IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v81y2015icp52-56.html
   My bibliography  Save this article

Some improvements of wind speed Markov chain modeling

Author

Listed:
  • Tang, Jie
  • Brouste, Alexandre
  • Tsui, Kwok Leung

Abstract

In this study, the traditional Markov chain method for wind speed modeling is analyzed and two improvements are introduced. New states categorization step and wind speeds simulation step are presented. They both take advantage of the empirical cumulative distribution function of the wind speed time series. Performances of the new method are tested in terms of modeling and short-term forecasting. The results suggest that this method overperforms the traditional one for modeling.

Suggested Citation

  • Tang, Jie & Brouste, Alexandre & Tsui, Kwok Leung, 2015. "Some improvements of wind speed Markov chain modeling," Renewable Energy, Elsevier, vol. 81(C), pages 52-56.
  • Handle: RePEc:eee:renene:v:81:y:2015:i:c:p:52-56
    DOI: 10.1016/j.renene.2015.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2013. "First and second order semi-Markov chains for wind speed modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1194-1201.
    2. Shamshad, A. & Bawadi, M.A. & Wan Hussin, W.M.A. & Majid, T.A. & Sanusi, S.A.M., 2005. "First and second order Markov chain models for synthetic generation of wind speed time series," Energy, Elsevier, vol. 30(5), pages 693-708.
    3. Carapellucci, Roberto & Giordano, Lorena, 2013. "A new approach for synthetically generating wind speeds: A comparison with the Markov chains method," Energy, Elsevier, vol. 49(C), pages 298-305.
    4. Nfaoui, H. & Essiarab, H. & Sayigh, A.A.M., 2004. "A stochastic Markov chain model for simulating wind speed time series at Tangiers, Morocco," Renewable Energy, Elsevier, vol. 29(8), pages 1407-1418.
    5. Kantz, Holger & Holstein, Detlef & Ragwitz, Mario & K. Vitanov, Nikolay, 2004. "Markov chain model for turbulent wind speed data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 315-321.
    6. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    7. Ettoumi, F.Youcef & Sauvageot, H & Adane, A.-E.-H, 2003. "Statistical bivariate modelling of wind using first-order Markov chain and Weibull distribution," Renewable Energy, Elsevier, vol. 28(11), pages 1787-1802.
    8. Guglielmo D'Amico & Filippo Petroni & Flavio Prattico, 2013. "Wind speed modeled as an indexed semi‐Markov process," Environmetrics, John Wiley & Sons, Ltd., vol. 24(6), pages 367-376, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    2. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    3. Ma, Jinrui & Fouladirad, Mitra & Grall, Antoine, 2018. "Flexible wind speed generation model: Markov chain with an embedded diffusion process," Energy, Elsevier, vol. 164(C), pages 316-328.
    4. Nuño Martinez, Edgar & Cutululis, Nicolaos & Sørensen, Poul, 2018. "High dimensional dependence in power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 197-213.
    5. Chaoyang Chen & Hualing Liu & Yong Xiao & Fagen Zhu & Li Ding & Fuwen Yang, 2022. "Power Generation Scheduling for a Hydro-Wind-Solar Hybrid System: A Systematic Survey and Prospect," Energies, MDPI, vol. 15(22), pages 1-31, November.
    6. Panos Kouvelis & Hirofumi Matsuo & Yixuan Xiao & Quan Yuan, 2023. "Long‐term service agreement in electricity supply chain with renewable energy penetration," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1830-1845, June.
    7. Guanjun Liu & Chao Wang & Hui Qin & Jialong Fu & Qin Shen, 2022. "A Novel Hybrid Machine Learning Model for Wind Speed Probabilistic Forecasting," Energies, MDPI, vol. 15(19), pages 1-16, September.
    8. Sun, Shaolong & Qiao, Han & Wei, Yunjie & Wang, Shouyang, 2017. "A new dynamic integrated approach for wind speed forecasting," Applied Energy, Elsevier, vol. 197(C), pages 151-162.
    9. Zjavka, Ladislav, 2015. "Wind speed forecast correction models using polynomial neural networks," Renewable Energy, Elsevier, vol. 83(C), pages 998-1006.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Jinrui & Fouladirad, Mitra & Grall, Antoine, 2018. "Flexible wind speed generation model: Markov chain with an embedded diffusion process," Energy, Elsevier, vol. 164(C), pages 316-328.
    2. D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.
    3. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    4. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2013. "First and second order semi-Markov chains for wind speed modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1194-1201.
    5. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2017. "Insuring wind energy production," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 542-553.
    6. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Economic performance indicators of wind energy based on wind speed stochastic modeling," Applied Energy, Elsevier, vol. 154(C), pages 290-297.
    7. D’Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2014. "Wind speed and energy forecasting at different time scales: A nonparametric approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 59-66.
    8. Feijóo, Andrés & Villanueva, Daniel, 2016. "Assessing wind speed simulation methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 473-483.
    9. Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
    10. Nuño Martinez, Edgar & Cutululis, Nicolaos & Sørensen, Poul, 2018. "High dimensional dependence in power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 197-213.
    11. Evans, S.P. & Clausen, P.D., 2015. "Modelling of turbulent wind flow using the embedded Markov chain method," Renewable Energy, Elsevier, vol. 81(C), pages 671-678.
    12. Chia-Hung Wang & Qigen Zhao & Rong Tian, 2023. "Short-Term Wind Power Prediction Based on a Hybrid Markov-Based PSO-BP Neural Network," Energies, MDPI, vol. 16(11), pages 1-24, May.
    13. Jónsdóttir, Guðrún Margrét & Milano, Federico, 2019. "Data-based continuous wind speed models with arbitrary probability distribution and autocorrelation," Renewable Energy, Elsevier, vol. 143(C), pages 368-376.
    14. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    15. Li, Gong & Shi, Jing & Zhou, Junyi, 2011. "Bayesian adaptive combination of short-term wind speed forecasts from neural network models," Renewable Energy, Elsevier, vol. 36(1), pages 352-359.
    16. Scholz, Teresa & Lopes, Vitor V. & Estanqueiro, Ana, 2014. "A cyclic time-dependent Markov process to model daily patterns in wind turbine power production," Energy, Elsevier, vol. 67(C), pages 557-568.
    17. Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.
    18. Chellali, Farouk & Khellaf, Adballah & Belouchrani, Adel & Recioui, Abdelmadjid, 2011. "A contribution in the actualization of wind map of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 993-1002, February.
    19. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2013. "Probabilistic modelling and analysis of stand-alone hybrid power systems," Energy, Elsevier, vol. 63(C), pages 19-27.
    20. Hong, Ying-Yi & Chang, Wen-Chun & Chang, Yung-Ruei & Lee, Yih-Der & Ouyang, Der-Chuan, 2017. "Optimal sizing of renewable energy generations in a community microgrid using Markov model," Energy, Elsevier, vol. 135(C), pages 68-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:81:y:2015:i:c:p:52-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.