IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8715-d978358.html
   My bibliography  Save this article

Development Method for the Driving Cycle of Electric Vehicles

Author

Listed:
  • Zhecheng Jing

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Tianxiao Wang

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Shupei Zhang

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Guolin Wang

    (School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

With the development of electric vehicles, more attention has been paid to the role of the driving cycle in vehicle performance testing. At present, the K-means algorithm is often used in the development of driving cycles. However, it is sensitive to the outlier points and also difficult to determine the K value. To solve this problem, the hierarchical cluster method is applied in this study. First, the real-world driving data are collected and denoised through wavelet domain denoising. Then, the data are divided into micro-trips and the characteristic parameters are extracted. The hierarchical cluster method is adopted to classify the micro-trips into different categories. An appropriate number of micro-trips are selected from each group in proportion to each category to assemble the driving cycle. Finally, both the economic simulation and the statistical analysis prove the accuracy of the generated driving cycle and the feasibility of the development method proposed in this paper.

Suggested Citation

  • Zhecheng Jing & Tianxiao Wang & Shupei Zhang & Guolin Wang, 2022. "Development Method for the Driving Cycle of Electric Vehicles," Energies, MDPI, vol. 15(22), pages 1-12, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8715-:d:978358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8715/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iwona Komorska & Andrzej Puchalski & Andrzej Niewczas & Marcin Ślęzak & Tomasz Szczepański, 2021. "Adaptive Driving Cycles of EVs for Reducing Energy Consumption," Energies, MDPI, vol. 14(9), pages 1-18, May.
    2. Brady, John & O’Mahony, Margaret, 2016. "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, Elsevier, vol. 177(C), pages 165-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    2. Nicu Bizon & Mircea Raceanu & Emmanouel Koudoumas & Adriana Marinoiu & Emmanuel Karapidakis & Elena Carcadea, 2020. "Renewable/Fuel Cell Hybrid Power System Operation Using Two Search Controllers of the Optimal Power Needed on the DC Bus," Energies, MDPI, vol. 13(22), pages 1-26, November.
    3. José I. Huertas & Michael Giraldo & Luis F. Quirama & Jenny Díaz, 2018. "Driving Cycles Based on Fuel Consumption," Energies, MDPI, vol. 11(11), pages 1-13, November.
    4. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    5. Emilia M. Szumska & Rafał S. Jurecki, 2021. "Parameters Influencing on Electric Vehicle Range," Energies, MDPI, vol. 14(16), pages 1-23, August.
    6. Crossin, Enda & Doherty, Peter J.B., 2016. "The effect of charging time on the comparative environmental performance of different vehicle types," Applied Energy, Elsevier, vol. 179(C), pages 716-726.
    7. Zvonimir Dabčević & Branimir Škugor & Jakov Topić & Joško Deur, 2022. "Synthesis of Driving Cycles Based on Low-Sampling-Rate Vehicle-Tracking Data and Markov Chain Methodology," Energies, MDPI, vol. 15(11), pages 1-21, June.
    8. Liu, Kai & Wang, Jiangbo & Yamamoto, Toshiyuki & Morikawa, Takayuki, 2016. "Modelling the multilevel structure and mixed effects of the factors influencing the energy consumption of electric vehicles," Applied Energy, Elsevier, vol. 183(C), pages 1351-1360.
    9. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    10. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    11. Cui, Yuepeng & Xu, Hao & Zou, Fumin & Chen, Zhihui & Gong, Kuangmin, 2021. "Optimization based method to develop representative driving cycle for real-world fuel consumption estimation," Energy, Elsevier, vol. 235(C).
    12. Menegon, Diego & Persson, Tomas & Haberl, Robert & Bales, Chris & Haller, Michel, 2020. "Direct characterisation of the annual performance of solar thermal and heat pump systems using a six-day whole system test," Renewable Energy, Elsevier, vol. 146(C), pages 1337-1353.
    13. Ba Hung, Nguyen & Jaewon, Sung & Lim, Ocktaeck, 2017. "A study of the effects of input parameters on the dynamics and required power of an electric bicycle," Applied Energy, Elsevier, vol. 204(C), pages 1347-1362.
    14. Qiao, Qinyu & Zhao, Fuquan & Liu, Zongwei & He, Xin & Hao, Han, 2019. "Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle," Energy, Elsevier, vol. 177(C), pages 222-233.
    15. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng & Li, Xiaoyu & Qu, Changhui, 2019. "Driving cycles construction for electric vehicles considering road environment: A case study in Beijing," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Liu, Yang & Zhang, Qi & Lyu, Cheng & Liu, Zhiyuan, 2021. "Modelling the energy consumption of electric vehicles under uncertain and small data conditions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 313-328.
    17. Wu, Ziyang & Wang, Can & Wolfram, Paul & Zhang, Yaxin & Sun, Xin & Hertwich, Edgar, 2019. "Assessing electric vehicle policy with region-specific carbon footprints," Applied Energy, Elsevier, vol. 256(C).
    18. Weiwei Chen & Maozeng Xu & Qingsong Xing & Ligang Cui & Liudan Jiao, 2020. "A Fuzzy Demand-Profit Model for the Sustainable Development of Electric Vehicles in China from the Perspective of Three-Level Service Chain," Sustainability, MDPI, vol. 12(16), pages 1-18, August.
    19. Tomáš Settey & Jozef Gnap & František Synák & Tomáš Skrúcaný & Marek Dočkalik, 2021. "Research into the Impacts of Driving Cycles and Load Weight on the Operation of a Light Commercial Electric Vehicle," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    20. Srinivasa Raghavan, Seshadri, 2020. "Behavioral Realism of Plug-In Electric Vehicle Usage: Implications for Emission Benefits, Energy Consumption, and Policies," Institute of Transportation Studies, Working Paper Series qt1rz000pf, Institute of Transportation Studies, UC Davis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8715-:d:978358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.