IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8547-d973445.html
   My bibliography  Save this article

Spray Cooling as a High-Efficient Thermal Management Solution: A Review

Author

Listed:
  • Jing Yin

    (State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    Jing Yin and Shangming Wang contributed equally to this work and should be considered as co-first authors.)

  • Shangming Wang

    (State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    Jing Yin and Shangming Wang contributed equally to this work and should be considered as co-first authors.)

  • Xuehao Sang

    (State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Zhifu Zhou

    (State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Bin Chen

    (State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Panidis Thrassos

    (Laboratory of Applied Thermodynamics Mechanical Engineering and Aeronautics Department, University of Patras, 26504 Rio Patras, Greece)

  • Alexandros Romeos

    (Laboratory of Applied Thermodynamics Mechanical Engineering and Aeronautics Department, University of Patras, 26504 Rio Patras, Greece)

  • Athanasios Giannadakis

    (Laboratory of Applied Thermodynamics Mechanical Engineering and Aeronautics Department, University of Patras, 26504 Rio Patras, Greece)

Abstract

As one of the most promising thermal management solutions, spray cooling has the advantages of high heat-transfer coefficient and maintaining a low temperature of the cooling surface. By summarizing the influential factors and practical applications of spray cooling, the current challenges and bottlenecks were indicated so as to prompt its potential applications in the future. Firstly, this paper reviewed the heat-transfer mechanism of spray cooling and found that spray cooling is more advantageous for heat dissipation in high-power electronic devices by comparing it with other cooling techniques. Secondly, the latest experimental studies on spray cooling were reviewed in detail, especially the effects of spray parameters, types of working fluid, surface modification, and environmental parameters on the performance of cooling system. Afterwards, the configuration and design of the spray cooling system, as well as its applications in the actual industry (data centers, hybrid electric vehicles, and so on) were enumerated and summarized. Finally, the scientific challenges and technical bottlenecks encountered in the theoretical research and industrial application of spray cooling technology were discussed, and the direction of future efforts were reasonably speculated.

Suggested Citation

  • Jing Yin & Shangming Wang & Xuehao Sang & Zhifu Zhou & Bin Chen & Panidis Thrassos & Alexandros Romeos & Athanasios Giannadakis, 2022. "Spray Cooling as a High-Efficient Thermal Management Solution: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8547-:d:973445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8547/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8547/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Wen-Long & Han, Feng-Yun & Liu, Qi-Nie & Zhao, Rui & Fan, Han-lin, 2011. "Experimental and theoretical investigation of surface temperature non-uniformity of spray cooling," Energy, Elsevier, vol. 36(1), pages 249-257.
    2. Kandasamy, Ranjith & Ho, Jin Yao & Liu, Pengfei & Wong, Teck Neng & Toh, Kok Chuan & Chua, Sunshine Jr, 2022. "Two-phase spray cooling for high ambient temperature data centers: Evaluation of system performance," Applied Energy, Elsevier, vol. 305(C).
    3. Yunus Tansu Aksoy & Yanshen Zhu & Pinar Eneren & Erin Koos & Maria Rosaria Vetrano, 2020. "The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review," Energies, MDPI, vol. 14(1), pages 1-33, December.
    4. Jiameng Tian & Bin Chen & Zhifu Zhou & Dong Li, 2020. "Theoretical Study on Cryogen Spray Cooling in Laser Treatment of Ota’s Nevus: Comparison and Optimization of R134a, R404A and R32," Energies, MDPI, vol. 13(21), pages 1-20, October.
    5. Zimmermann, Severin & Meijer, Ingmar & Tiwari, Manish K. & Paredes, Stephan & Michel, Bruno & Poulikakos, Dimos, 2012. "Aquasar: A hot water cooled data center with direct energy reuse," Energy, Elsevier, vol. 43(1), pages 237-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shangming & Zhou, Zhifu & Sang, Xuehao & Chen, Bin & Romeos, Alexandros & Giannadakis, Athanasios & Thrassos, Panidis, 2023. "Coupling dynamic thermal analysis and surface modification to enhance heat dissipation of R410A spray cooling for high-power electronics," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianshi Zhang & Ziming Mo & Xiaoyu Xu & Xiaoyan Liu & Haopeng Chen & Zhiwu Han & Yuying Yan & Yingai Jin, 2022. "Advanced Study of Spray Cooling: From Theories to Applications," Energies, MDPI, vol. 15(23), pages 1-40, December.
    2. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    3. Chen, Hua & Cheng, Wen-long & Zhang, Wei-wei & Peng, Yu-hang & Jiang, Li-jia, 2017. "Energy saving evaluation of a novel energy system based on spray cooling for supercomputer center," Energy, Elsevier, vol. 141(C), pages 304-315.
    4. Lu, Tao & Lü, Xiaoshu & Välisuo, Petri & Zhang, Qunli & Clements-Croome, Derek, 2024. "Innovative approaches for deep decarbonization of data centers and building space heating networks: Modeling and comparison of novel waste heat recovery systems for liquid cooling systems," Applied Energy, Elsevier, vol. 357(C).
    5. Silva-Llanca, Luis & Ortega, Alfonso & Fouladi, Kamran & del Valle, Marcelo & Sundaralingam, Vikneshan, 2018. "Determining wasted energy in the airside of a perimeter-cooled data center via direct computation of the Exergy Destruction," Applied Energy, Elsevier, vol. 213(C), pages 235-246.
    6. Wenxiong Xi & Mengyao Xu & Chaoyang Liu & Jian Liu, 2022. "Recent Developments of Heat Transfer Enhancement and Thermal Management Technology," Energies, MDPI, vol. 15(16), pages 1-3, August.
    7. Tiezhu Sun & Xiaojun Huang & Caihang Liang & Riming Liu & Yongcheng Yan, 2023. "Energy Consumption and Energy Saving Analysis of Air-Conditioning Systems of Data Centers in Typical Cities in China," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    8. Cheng, Wen-Long & Zhang, Wei-Wei & Chen, Hua & Hu, Lei, 2016. "Spray cooling and flash evaporation cooling: The current development and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 614-628.
    9. Aras Dogan & Sibel Yilmaz & Mustafa Kuzay & Dirk-Jan Korpershoek & Jeroen Burks & Ender Demirel, 2023. "Conjugate Heat Transfer Modeling of a Cold Plate Design for Hybrid-Cooled Data Centers," Energies, MDPI, vol. 16(7), pages 1-21, March.
    10. Gupta, Rohit & Moazamigoodarzi, Hosein & MirhoseiniNejad, SeyedMorteza & Down, Douglas G. & Puri, Ishwar K., 2020. "Workload management for air-cooled data centers: An energy and exergy based approach," Energy, Elsevier, vol. 209(C).
    11. Yuan, Xiaolei & Liang, Yumin & Hu, Xinyi & Xu, Yizhe & Chen, Yongbao & Kosonen, Risto, 2023. "Waste heat recoveries in data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Wansheng Yang & Lin Yang & Junjie Ou & Zhongqi Lin & Xudong Zhao, 2019. "Investigation of Heat Management in High Thermal Density Communication Cabinet by a Rear Door Liquid Cooling System," Energies, MDPI, vol. 12(22), pages 1-25, November.
    13. Sijun Xu & Hua Zhang & Zilong Wang, 2023. "Thermal Management and Energy Consumption in Air, Liquid, and Free Cooling Systems for Data Centers: A Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
    14. Liu, Pengfei & Kandasamy, Ranjith & Ho, Jin Yao & Wong, Teck Neng & Toh, Kok Chuan, 2023. "Dynamic performance analysis and thermal modelling of a novel two-phase spray cooled rack system for data center cooling," Energy, Elsevier, vol. 269(C).
    15. Leyla Amiri & Edris Madadian & Navid Bahrani & Seyed Ali Ghoreishi-Madiseh, 2021. "Techno-Economic Analysis of Waste Heat Utilization in Data Centers: Application of Absorption Chiller Systems," Energies, MDPI, vol. 14(9), pages 1-11, April.
    16. Huang, Pei & Copertaro, Benedetta & Zhang, Xingxing & Shen, Jingchun & Löfgren, Isabelle & Rönnelid, Mats & Fahlen, Jan & Andersson, Dan & Svanfeldt, Mikael, 2020. "A review of data centers as prosumers in district energy systems: Renewable energy integration and waste heat reuse for district heating," Applied Energy, Elsevier, vol. 258(C).
    17. Wahlroos, Mikko & Pärssinen, Matti & Manner, Jukka & Syri, Sanna, 2017. "Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks," Energy, Elsevier, vol. 140(P1), pages 1228-1238.
    18. Aristov, Yu.I., 2021. "Adsorptive conversion of ultralow-temperature heat: Thermodynamic issues," Energy, Elsevier, vol. 236(C).
    19. Kim, Min-Hwi & Ham, Sang-Woo & Park, Jun-Seok & Jeong, Jae-Weon, 2014. "Impact of integrated hot water cooling and desiccant-assisted evaporative cooling systems on energy savings in a data center," Energy, Elsevier, vol. 78(C), pages 384-396.
    20. Eric Laurenz & Gerrit Füldner & Lena Schnabel & Gerhard Schmitz, 2020. "A Novel Approach for the Determination of Sorption Equilibria and Sorption Enthalpy Used for MOF Aluminium Fumarate with Water," Energies, MDPI, vol. 13(11), pages 1-10, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8547-:d:973445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.