IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v55y2016icp614-628.html
   My bibliography  Save this article

Spray cooling and flash evaporation cooling: The current development and application

Author

Listed:
  • Cheng, Wen-Long
  • Zhang, Wei-Wei
  • Chen, Hua
  • Hu, Lei

Abstract

With the increasing power density of electronic chips, large radar, laser diode array and other equipments, the conventional heat dissipation methods are difficult to achieve the desired thermal control requirements increasingly. Spray cooling has attracted widespread attention due to its advantages in high heat flux removal such as less flow rate demand, high heat dissipation capacity, low superheat degree, no temperature overshoot and no contact thermal resistance with the heating surface. As of today, lots of researchers engage in this field and numerous achievements of spray cooling are obtained theoretically and experimentally. In this paper, an overview with spray cooling was completed. The current research progresses of heat transfer mechanisms of spray cooling in the three stages (single-phase regime, two-phase regime and critical heat flux regime) were summarized, and the influence factors, spray characteristics, heating surface characteristics, fluid characteristics and external environment characteristics, were analyzed in detail. The flash evaporation cooling, a special form of spray cooling, was also explored by a number of studies due to its irreplaceable advantage in low pressure environment or in space. Film flash evaporation and droplet flash evaporation significantly improve the cooling capacity of system and utilization of working fluid. In fact, the application of flash evaporation cooling is profound for development and expansion of spray cooling. Additionally, spray cooling system and nozzle were also elaborated in the paper.

Suggested Citation

  • Cheng, Wen-Long & Zhang, Wei-Wei & Chen, Hua & Hu, Lei, 2016. "Spray cooling and flash evaporation cooling: The current development and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 614-628.
  • Handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:614-628
    DOI: 10.1016/j.rser.2015.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115012666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Wen-Long & Han, Feng-Yun & Liu, Qi-Nie & Zhao, Rui & Fan, Han-lin, 2011. "Experimental and theoretical investigation of surface temperature non-uniformity of spray cooling," Energy, Elsevier, vol. 36(1), pages 249-257.
    2. Panão, Miguel R.O. & Moreira, António L.N. & Durão, Diamantino F.G., 2011. "Thermal-fluid assessment of multijet atomization for spray cooling applications," Energy, Elsevier, vol. 36(4), pages 2302-2311.
    3. Murshed, S.M. Sohel & Nieto de Castro, C.A. & Lourenço, M.J.V. & Lopes, M.L.M. & Santos, F.J.V., 2011. "A review of boiling and convective heat transfer with nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2342-2354, June.
    4. Cheng, Wen-Long & Han, Feng-Yun & Liu, Qi-Nie & Fan, Han-Lin, 2011. "Spray characteristics and spray cooling heat transfer in the non-boiling regime," Energy, Elsevier, vol. 36(5), pages 3399-3405.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Haojie & Wang, Junfeng & Li, Bin & Yu, Kai & Wang, Hai & Tian, Jiameng & Li, Bufa, 2022. "Electrospray characteristics and cooling performance of dielectric fluid HFE-7100," Energy, Elsevier, vol. 259(C).
    2. Nianyong Zhou & Hao Feng & Yixing Guo & Wenbo Liu & Haoping Peng & Yun Lei & Song Deng & Yu Wang, 2021. "Influence of the Refrigerant Charge on the Heat Transfer Performance for a Closed-Loop Spray Cooling System," Energies, MDPI, vol. 14(22), pages 1-15, November.
    3. Yiannis Ampatzidis & Josh Kiner & Reza Abdolee & Louise Ferguson, 2018. "Voice-Controlled and Wireless Solid Set Canopy Delivery (VCW-SSCD) System for Mist-Cooling," Sustainability, MDPI, vol. 10(2), pages 1-14, February.
    4. Jia-Xin Li & Yun-Ze Li & Ben-Yuan Cai & En-Hui Li, 2019. "Experimental Investigation on Heat Transfer Mechanism of Air-Blast-Spray-Cooling System with a Two-Phase Ejector Loop for Aeronautical Application," Energies, MDPI, vol. 12(20), pages 1-20, October.
    5. Zhi-Fu Zhou & Dong-Qing Zhu & Guan-Yu Lu & Bin Chen & Wei-Tao Wu & Yu-Bai Li, 2019. "Evaluation of the Performance of the Drag Force Model in Predicting Droplet Evaporation for R134a Single Droplet and Spray Characteristics for R134a Flashing Spray," Energies, MDPI, vol. 12(24), pages 1-17, December.
    6. Yunus Tansu Aksoy & Yanshen Zhu & Pinar Eneren & Erin Koos & Maria Rosaria Vetrano, 2020. "The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review," Energies, MDPI, vol. 14(1), pages 1-33, December.
    7. GaneshKumar, Poongavanam & Sivalingam, VinothKumar & Vigneswaran, V.S. & Ramalingam, Velraj & Seong Cheol, Kim & Vanaraj, Ramkumar, 2024. "Spray cooling for hydrogen vehicle, electronic devices, solar and building (low temperature) applications: A state-of-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Hua & Cheng, Wen-long & Zhang, Wei-wei & Peng, Yu-hang & Jiang, Li-jia, 2017. "Energy saving evaluation of a novel energy system based on spray cooling for supercomputer center," Energy, Elsevier, vol. 141(C), pages 304-315.
    2. Tianshi Zhang & Ziming Mo & Xiaoyu Xu & Xiaoyan Liu & Haopeng Chen & Zhiwu Han & Yuying Yan & Yingai Jin, 2022. "Advanced Study of Spray Cooling: From Theories to Applications," Energies, MDPI, vol. 15(23), pages 1-40, December.
    3. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    4. Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
    5. Huminic, Gabriela & Huminic, Angel, 2012. "Application of nanofluids in heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5625-5638.
    6. Murshed, S.M. Sohel & Nieto de Castro, C.A., 2016. "Conduction and convection heat transfer characteristics of ethylene glycol based nanofluids – A review," Applied Energy, Elsevier, vol. 184(C), pages 681-695.
    7. Cheng, Wen-Long & Han, Feng-Yun & Liu, Qi-Nie & Fan, Han-Lin, 2011. "Spray characteristics and spray cooling heat transfer in the non-boiling regime," Energy, Elsevier, vol. 36(5), pages 3399-3405.
    8. Jihang Xu & Weitao Bai & Jian Wang & Zhihui Mu & Weizhen Sun & Boda Dong & Kai Song & Yalan Yang & Shirong Guo & Sheng Shu & Yu Wang, 2023. "Study on the Cooling Effect of Double-Layer Spray Greenhouse," Agriculture, MDPI, vol. 13(7), pages 1-16, July.
    9. Jing Yin & Shangming Wang & Xuehao Sang & Zhifu Zhou & Bin Chen & Panidis Thrassos & Alexandros Romeos & Athanasios Giannadakis, 2022. "Spray Cooling as a High-Efficient Thermal Management Solution: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    10. D’Antoni, M. & Romeli, D. & Fedrizzi, R., 2016. "A model for the performance assessment of hybrid coolers by means of transient numerical simulation," Applied Energy, Elsevier, vol. 181(C), pages 477-494.
    11. Fabre, Elaine & Murshed, S.M. Sohel, 2021. "A comprehensive review of thermophysical properties and prospects of ionanocolloids in thermal energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. GaneshKumar, Poongavanam & Sivalingam, VinothKumar & Vigneswaran, V.S. & Ramalingam, Velraj & Seong Cheol, Kim & Vanaraj, Ramkumar, 2024. "Spray cooling for hydrogen vehicle, electronic devices, solar and building (low temperature) applications: A state-of-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Xu, Haojie & Wang, Junfeng & Li, Bin & Yu, Kai & Wang, Hai & Tian, Jiameng & Li, Bufa, 2022. "Electrospray characteristics and cooling performance of dielectric fluid HFE-7100," Energy, Elsevier, vol. 259(C).
    14. Arani, Ali Akbar Abbasian & Alirezaie, Ali & Kamyab, Mohammad Hassan & Motallebi, Sayyid Majid, 2020. "Statistical analysis of enriched water heat transfer with various sizes of MgO nanoparticles using artificial neural networks modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    15. Luo, Zhenbing & He, Wei & Deng, Xiong & Zheng, Mu & Gao, Tianxiang & Li, Shiqing, 2023. "A compacted non-pump self-circulation spray cooling system based on dual synthetic jet referring to the principle of two-phase loop thermosyphon," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:614-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.