IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9219-d994298.html
   My bibliography  Save this article

Advanced Study of Spray Cooling: From Theories to Applications

Author

Listed:
  • Tianshi Zhang

    (College of Automotive Engineering, Jilin University, Changchun 130022, China
    State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
    Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
    Yibin Research Institute of Jilin University, Yibin 644000, China)

  • Ziming Mo

    (College of Automotive Engineering, Jilin University, Changchun 130022, China
    State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Xiaoyu Xu

    (College of Automotive Engineering, Jilin University, Changchun 130022, China
    State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
    Yibin Research Institute of Jilin University, Yibin 644000, China)

  • Xiaoyan Liu

    (College of Automotive Engineering, Jilin University, Changchun 130022, China
    State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
    Yibin Research Institute of Jilin University, Yibin 644000, China)

  • Haopeng Chen

    (College of Automotive Engineering, Jilin University, Changchun 130022, China
    State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
    Yibin Research Institute of Jilin University, Yibin 644000, China)

  • Zhiwu Han

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
    Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China)

  • Yuying Yan

    (Faculty of Engineering, University of Nottingham, Nottingham NG8 1BB, UK)

  • Yingai Jin

    (College of Automotive Engineering, Jilin University, Changchun 130022, China
    State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
    Yibin Research Institute of Jilin University, Yibin 644000, China)

Abstract

With the continuous integration and miniaturization of electronic devices, the heat transfer of the electronic devices continues to surge. This means that thermal management equipment with higher heat flux cooling capacity is required to maintain its normal operation. This paper systematically reviews the progress of spray cooling. In the first part, the thermal dissipation mechanism of spray cooling in the non-boiling regime and boiling regime are summarized, and the correlation formula of heat transfer is summarized. In the second part, the influencing factors of various parameters of the nozzle are summarized, the experimental research and numerical simulation research are summarized separately, and some means and methods to strengthen heat transfer are listed. In the third part, we summarize the current application research of spray cooling in some hot new fields, including electronic technology, aerospace, biomedicine, battery safety, etc. The research prospects and challenges in these fields are highlighted. This research provides a timely and necessary study of spray cooling.

Suggested Citation

  • Tianshi Zhang & Ziming Mo & Xiaoyu Xu & Xiaoyan Liu & Haopeng Chen & Zhiwu Han & Yuying Yan & Yingai Jin, 2022. "Advanced Study of Spray Cooling: From Theories to Applications," Energies, MDPI, vol. 15(23), pages 1-40, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9219-:d:994298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Wen-Long & Han, Feng-Yun & Liu, Qi-Nie & Zhao, Rui & Fan, Han-lin, 2011. "Experimental and theoretical investigation of surface temperature non-uniformity of spray cooling," Energy, Elsevier, vol. 36(1), pages 249-257.
    2. Kandasamy, Ranjith & Ho, Jin Yao & Liu, Pengfei & Wong, Teck Neng & Toh, Kok Chuan & Chua, Sunshine Jr, 2022. "Two-phase spray cooling for high ambient temperature data centers: Evaluation of system performance," Applied Energy, Elsevier, vol. 305(C).
    3. Jiameng Tian & Bin Chen & Zhifu Zhou & Dong Li, 2020. "Theoretical Study on Cryogen Spray Cooling in Laser Treatment of Ota’s Nevus: Comparison and Optimization of R134a, R404A and R32," Energies, MDPI, vol. 13(21), pages 1-20, October.
    4. Cheng, Wen-Long & Han, Feng-Yun & Liu, Qi-Nie & Fan, Han-Lin, 2011. "Spray characteristics and spray cooling heat transfer in the non-boiling regime," Energy, Elsevier, vol. 36(5), pages 3399-3405.
    5. Liu, Tong & Tao, Changfa & Wang, Xishi, 2020. "Cooling control effect of water mist on thermal runaway propagation in lithium ion battery modules," Applied Energy, Elsevier, vol. 267(C).
    6. Abdolzadeh, M. & Ameri, M., 2009. "Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells," Renewable Energy, Elsevier, vol. 34(1), pages 91-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiankun Chang & Yuanfeng Huang & Kaiyan Liu & Xin Xu & Yaohua Zhao & Song Pan, 2024. "Optimization Control Strategies and Evaluation Metrics of Cooling Systems in Data Centers: A Review," Sustainability, MDPI, vol. 16(16), pages 1-41, August.
    2. Yunus Tansu Aksoy & Hendrik Cornelissen & Pinar Eneren & Maria Rosaria Vetrano, 2023. "Spray Cooling Investigation of TiO 2 –Water Nanofluids on a Hot Surface," Energies, MDPI, vol. 16(7), pages 1-14, March.
    3. Wojciech Kalawa & Karol Sztekler & Jakub Kozaczuk & Łukasz Mika & Ewelina Radomska & Wojciech Nowak & Andrzej Gołdasz, 2024. "The Effect of Nozzle Configuration on Adsorption-Chiller Performance," Energies, MDPI, vol. 17(5), pages 1-15, March.
    4. Bartosz Ciupek & Zbigniew Nadolny, 2024. "Emission of Harmful Substances from the Combustion of Wood Pellets in a Low-Temperature Burner with Air Gradation: Research and Analysis of a Technical Problem," Energies, MDPI, vol. 17(13), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Yin & Shangming Wang & Xuehao Sang & Zhifu Zhou & Bin Chen & Panidis Thrassos & Alexandros Romeos & Athanasios Giannadakis, 2022. "Spray Cooling as a High-Efficient Thermal Management Solution: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    2. Cheng, Wen-Long & Zhang, Wei-Wei & Chen, Hua & Hu, Lei, 2016. "Spray cooling and flash evaporation cooling: The current development and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 614-628.
    3. Chen, Hua & Cheng, Wen-long & Zhang, Wei-wei & Peng, Yu-hang & Jiang, Li-jia, 2017. "Energy saving evaluation of a novel energy system based on spray cooling for supercomputer center," Energy, Elsevier, vol. 141(C), pages 304-315.
    4. Zhang, Wei & Chen, Miao & Zhang, Shaofeng & Wang, Yiping, 2020. "Designation of a solar falling-film photochemical hybrid system for the decolorization of azo dyes," Energy, Elsevier, vol. 197(C).
    5. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    6. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    7. Del Pero, Claudio & Aste, Niccolò & Leonforte, Fabrizio, 2021. "The effect of rain on photovoltaic systems," Renewable Energy, Elsevier, vol. 179(C), pages 1803-1814.
    8. Huang, Zonghou & Yu, Yin & Duan, Qiangling & Qin, Peng & Sun, Jinhua & Wang, Qingsong, 2022. "Heating position effect on internal thermal runaway propagation in large-format lithium iron phosphate battery," Applied Energy, Elsevier, vol. 325(C).
    9. Gaur, Ankita & Tiwari, G.N., 2014. "Performance of a-Si thin film PV modules with and without water flow: An experimental validation," Applied Energy, Elsevier, vol. 128(C), pages 184-191.
    10. Chen, Mingyi & Yu, Yue & Ouyang, Dongxu & Weng, Jingwen & Zhao, Luyao & Wang, Jian & Chen, Yin, 2024. "Research progress of enhancing battery safety with phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Hadipour, Amirhosein & Rajabi Zargarabadi, Mehran & Rashidi, Saman, 2021. "An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis," Renewable Energy, Elsevier, vol. 164(C), pages 867-875.
    12. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
    13. Tiezhu Sun & Xiaojun Huang & Caihang Liang & Riming Liu & Yongcheng Yan, 2023. "Energy Consumption and Energy Saving Analysis of Air-Conditioning Systems of Data Centers in Typical Cities in China," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    14. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    15. Henrik Zsiborács & Gábor Pintér & Attila Bai & József Popp & Zoltán Gabnai & Béla Pályi & István Farkas & Nóra Hegedűsné Baranyai & Christian Gützer & Heidelinde Trimmel & Sandro Oswald & Philipp Weih, 2018. "Comparison of Thermal Models for Ground-Mounted South-Facing Photovoltaic Technologies: A Practical Case Study," Energies, MDPI, vol. 11(5), pages 1-18, May.
    16. Jae Woo Ko & Hae Lim Cha & David Kwang-Soon Kim & Jong Rok Lim & Gyu Gwang Kim & Byeong Gwan Bhang & Chang Sub Won & Han Sang Jung & Dong Hyung Kang & Hyung Keun Ahn, 2017. "Safety Analysis of Grounding Resistance with Depth of Water for Floating PVs," Energies, MDPI, vol. 10(9), pages 1-12, September.
    17. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Saxena, Ashish & Deshmukh, Sandip & Nirali, Somanath & Wani, Saurabh, 2018. "Laboratory based Experimental Investigation of Photovoltaic (PV) Thermo-control with Water and its Proposed Real-time Implementation," Renewable Energy, Elsevier, vol. 115(C), pages 128-138.
    19. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9219-:d:994298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.