IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p4959-d857303.html
   My bibliography  Save this article

Assessment of the Technological Sustainability of the Tri-Generation Model in the Era of Climate Change: A Case Study of Terminal Complexes

Author

Listed:
  • Yong-Hoon Im

    (Department of Mechanical System Engineering, Sookmyung Women’s University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Korea)

Abstract

In this study, the operating conditions of the tri-generation model in actual field situations for terminal complex buildings were investigated. The operational characteristics of the installed tri-generation system (TGS), and performance in terms of relative primary energy savings (RPES), were evaluated to confirm its market competitiveness against separate heat and power (SHP). As a result of the analysis, the technological superiority of the TGS model compared to the SHP method was much lower than theoretical expectation, which was 17.9% in the best case and close to 0 in the worst case. The importance of the TGS’s operational strategy to achieve annual operational economics was emphasized based on the analysis of the TGS’s actual daily operational data. The sustainability of the TGS model in the era of climate change was also evaluated through RPES sensitivity analysis according to the level of renewable power generation in the power sector, which is rapidly increasing in response to climate change.

Suggested Citation

  • Yong-Hoon Im, 2022. "Assessment of the Technological Sustainability of the Tri-Generation Model in the Era of Climate Change: A Case Study of Terminal Complexes," Energies, MDPI, vol. 15(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4959-:d:857303
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/4959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/4959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. da Silva, Fellipe Sartori & Matelli, José Alexandre, 2021. "Resilience in cogeneration systems: Metrics for evaluation and influence of design aspects," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Pavel Atănăsoae & Radu Dumitru Pentiuc & Laurențiu Dan Milici, 2022. "Opportunity Analysis of Cogeneration and Trigeneration Solutions: An Application in the Case of a Drug Factory," Energies, MDPI, vol. 15(8), pages 1-27, April.
    3. Ronelly De Souza & Melchiorre Casisi & Diego Micheli & Mauro Reini, 2021. "A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario," Energies, MDPI, vol. 14(17), pages 1-30, August.
    4. G. Ciampi & A. Rosato & M. Scorpio & S. Sibilio, 2016. "Energy performance of a residential building-integrated micro-cogeneration system upon varying thermal load and control logic," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(1), pages 75-88.
    5. Marco F. Torchio, 2013. "Energy-Exergy, Environmental and Economic Criteria in Combined Heat and Power (CHP) Plants: Indexes for the Evaluation of the Cogeneration Potential," Energies, MDPI, vol. 6(5), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young-Jik Youn & Yong-Hoon Im, 2022. "Technical Feasibility Assessment for a Novel Fifth-Generation District Heating Model of Interconnected Operation with a Large-Scale Building," Sustainability, MDPI, vol. 14(19), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    2. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    3. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Ronelly De Souza & Emanuele Nadalon & Melchiorre Casisi & Mauro Reini, 2022. "Optimal Sharing Electricity and Thermal Energy Integration for an Energy Community in the Perspective of 100% RES Scenario," Sustainability, MDPI, vol. 14(16), pages 1-39, August.
    5. Pavel Atănăsoae, 2020. "Technical and Economic Assessment of Micro-Cogeneration Systems for Residential Applications," Sustainability, MDPI, vol. 12(3), pages 1-19, February.
    6. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. J. Villarroel-Schneider & Anders Malmquist & Joseph A. Araoz & J. Martí-Herrero & Andrew Martin, 2019. "Performance Analysis of a Small-Scale Biogas-Based Trigeneration Plant: An Absorption Refrigeration System Integrated to an Externally Fired Microturbine," Energies, MDPI, vol. 12(20), pages 1-30, October.
    8. Geoffrey P. Hammond & Adam A. Titley, 2022. "Small-Scale Combined Heat and Power Systems: The Prospects for a Distributed Micro-Generator in the ‘Net-Zero’ Transition within the UK," Energies, MDPI, vol. 15(16), pages 1-32, August.
    9. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    10. Ramon Francesconi & Matteo Luzzi & Dario Barsi & Francesca Satta & Fabrizio Stefani & Pietro Zunino, 2022. "Preliminary Design of a Mini Gas Turbine via 1D Methodology," Energies, MDPI, vol. 15(21), pages 1-18, November.
    11. Emanuele Nadalon & Ronelly De Souza & Melchiorre Casisi & Mauro Reini, 2023. "Part-Load Energy Performance Assessment of a Pumped Thermal Energy Storage System for an Energy Community," Energies, MDPI, vol. 16(15), pages 1-30, July.
    12. Xiaolong Yang & Yan Li & Dongxiao Niu & Lijie Sun, 2019. "Research on the Economic Benefit Evaluation of Combined Heat and Power (CHP) Technical Renovation Projects Based on the Improved Factor Analysis and Incremental Method in China," Sustainability, MDPI, vol. 11(19), pages 1-23, September.
    13. Łukasz Jarosław Kozar & Adam Sulich, 2023. "Green Jobs in the Energy Sector," Energies, MDPI, vol. 16(7), pages 1-20, March.
    14. Nikolay Rogalev & Andrey Rogalev & Vladimir Kindra & Olga Zlyvko & Sergey Osipov, 2023. "An Overview of Small Nuclear Power Plants for Clean Energy Production: Comparative Analysis of Distributed Generation Technologies and Future Perspectives," Energies, MDPI, vol. 16(13), pages 1-19, June.
    15. Pavel Atănăsoae, 2018. "The Operating Strategies of Small-Scale Combined Heat and Power Plants in Liberalized Power Markets," Energies, MDPI, vol. 11(11), pages 1-16, November.
    16. Ayşe Fidan Altun, 2022. "A Conceptual Design and Analysis of a Novel Trigeneration System Consisting of a Gas Turbine Power Cycle with Intercooling, Ammonia–Water Absorption Refrigeration, and Hot Water Production," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    17. Eardley, Scott & Choi, Jun-Ki & Hong, Taehoon & An, Jongbaek, 2024. "Decarbonization potential of regional combined heat and power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. João Paulo Guerra & Fernando Henrique Cardoso & Alex Nogueira & Luiz Kulay, 2018. "Thermodynamic and Environmental Analysis of Scaling up Cogeneration Units Driven by Sugarcane Biomass to Enhance Power Exports," Energies, MDPI, vol. 11(1), pages 1-23, January.
    19. Pavel Atănăsoae, 2022. "Allocation of Joint Costs and Price Setting for Electricity and Heat Generated in Cogeneration," Energies, MDPI, vol. 16(1), pages 1-20, December.
    20. Aste, Niccolò & Caputo, Paola & Del Pero, Claudio & Ferla, Giulio & Huerto-Cardenas, Harold Enrique & Leonforte, Fabrizio & Miglioli, Alessandro, 2020. "A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:4959-:d:857303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.