IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p900-d735019.html
   My bibliography  Save this article

Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review

Author

Listed:
  • Fabrizio Reale

    (Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS), National Research Council (CNR), 80125 Naples, Italy)

  • Raniero Sannino

    (Italian National Agency for New Technologies (ENEA), Energy and Sustainable Economic Development, 00123 Rome, Italy)

Abstract

In the context of the great research pulse on clean energy transition, distributed energy systems have a key role, especially in the case of integration of both renewable and traditional energy sources. The stable interest in small-scale gas turbines can further increase owing to their flexibility in both operation and fuel supply. Since their not-excellent electrical efficiency, research activities on micro gas turbine (MGT) are focused on the performance improvements that are achievable in several ways, like modifying the Brayton cycle, integrating two or more plants, using cleaner fuels. Hence, during the last decades, the growing interest in MGT-based energy systems encouraged the development of many numerical approaches aimed to provide a reliable and effective prediction of the energy systems’ behavior. Indeed, numerical modeling can help to individuate potentialities and issues of each enhanced layout or hybrid energy system, and this review aims to discuss the various layout solutions proposed by researchers, with particular attention to recent publications, highlighting the adopted modeling approaches and methods.

Suggested Citation

  • Fabrizio Reale & Raniero Sannino, 2022. "Numerical Modeling of Energy Systems Based on Micro Gas Turbine: A Review," Energies, MDPI, vol. 15(3), pages 1-24, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:900-:d:735019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/900/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    2. Fabrizio Reale & Patrizio Massoli, 2024. "A Hybrid Energy System Based on Externally Fired Micro Gas Turbines, Waste Heat Recovery and Gasification Systems: An Energetic and Exergetic Performance Analysis," Energies, MDPI, vol. 17(15), pages 1-16, July.
    3. Vittorio Bonasio & Silvia Ravelli, 2022. "Performance Analysis of an Ammonia-Fueled Micro Gas Turbine," Energies, MDPI, vol. 15(11), pages 1-18, May.
    4. Fabrizio Reale & Raffaela Calabria & Patrizio Massoli, 2023. "Performance Analysis of WHR Systems for Marine Applications Based on sCO 2 Gas Turbine and ORC," Energies, MDPI, vol. 16(11), pages 1-19, May.
    5. Iliya Krastev Iliev & Antonina Andreevna Filimonova & Andrey Alexandrovich Chichirov & Natalia Dmitrievna Chichirova & Plamen Ganchev Kangalov, 2024. "Computational and Experimental Research on the Influence of Supplied Gas Fuel Mixture on High-Temperature Fuel Cell Performance Characteristics," Energies, MDPI, vol. 17(11), pages 1-23, May.
    6. Ramon Francesconi & Matteo Luzzi & Dario Barsi & Francesca Satta & Fabrizio Stefani & Pietro Zunino, 2022. "Preliminary Design of a Mini Gas Turbine via 1D Methodology," Energies, MDPI, vol. 15(21), pages 1-18, November.
    7. Laith Mustafa & Rafał Ślefarski & Radosław Jankowski, 2024. "Thermodynamic Analysis of Gas Turbine Systems Fueled by a CH 4 /H 2 Mixture," Sustainability, MDPI, vol. 16(2), pages 1-15, January.
    8. Reyhaneh Banihabib & Mohsen Assadi, 2022. "The Role of Micro Gas Turbines in Energy Transition," Energies, MDPI, vol. 15(21), pages 1-22, October.
    9. Fabrizio Reale, 2022. "Effects of Steam Injection on the Permissible Hydrogen Content and Gaseous Emissions in a Micro Gas Turbine Supplied by a Mixture of CH 4 and H 2 : A CFD Analysis," Energies, MDPI, vol. 15(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:900-:d:735019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.