IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p8225-d962700.html
   My bibliography  Save this article

A Particle Swarm Optimization Technique Tuned TID Controller for Frequency and Voltage Regulation with Penetration of Electric Vehicles and Distributed Generations

Author

Listed:
  • Hiramani Shukla

    (Electrical Engineering Department, Maulana Azad National Institute of Technology Bhopal, Bhopal 462003, India)

  • Srete Nikolovski

    (Power Engineering Department, Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University of Osijek, K. Trpimira 2B, HR-31000 Osijek, Croatia)

  • More Raju

    (Electrical Engineering Department, Maulana Azad National Institute of Technology Bhopal, Bhopal 462003, India)

  • Ankur Singh Rana

    (Department of Electrical and Electronics Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India)

  • Pawan Kumar

    (Electrical and Instrumentation Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, India)

Abstract

An interconnected power system requires specific restrictions to be maintained for frequency, tie-line power, and the terminal voltage of synchronized generators to avoid instability. Therefore, frequency stability and voltage regulation issues are covered individually and jointly in the current research work. Initially in test system 1, automatic generation control (AGC) investigations are done on two interconnected systems with thermal plants and electric vehicles in one area and distributed generation and electric vehicles in other area. The automatic voltage regulator (AVR) problem alone is chosen for investigation in test system 2. The third test system addresses the combined AGC and AVR issues. The performance of the fractional-order tilt-integral-derivative (TID) controller is compared with that of a widely used proportional integral derivative (PID) controller in all three test systems studies. The findings demonstrate better performance of the TID controller than PID in terms of providing superior dynamic metrics, such as low peak overshoots, undershoots, and settling time, as well as decreased oscillations amplitudes. Additionally, TID performs better than PID despite randomized load disturbance, system non-linearities, and time delays in AGC and the combined AGC and AVR problem. The PSO-tuned TID controller is insensitive to variation in load damping factor and time constants of the AVR system. Finally, the results are validated by an OPAL-RT 4510 real-time digital simulator.

Suggested Citation

  • Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "A Particle Swarm Optimization Technique Tuned TID Controller for Frequency and Voltage Regulation with Penetration of Electric Vehicles and Distributed Generations," Energies, MDPI, vol. 15(21), pages 1-32, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8225-:d:962700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/8225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/8225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deepak Kumar Gupta & Amitkumar V. Jha & Bhargav Appasani & Avireni Srinivasulu & Nicu Bizon & Phatiphat Thounthong, 2021. "Load Frequency Control Using Hybrid Intelligent Optimization Technique for Multi-Source Power Systems," Energies, MDPI, vol. 14(6), pages 1-16, March.
    2. Yuri Bulatov & Andrey Kryukov & Konstantin Suslov, 2022. "Using Group Predictive Voltage and Frequency Regulators of Distributed Generation Plants in Cyber-Physical Power Supply Systems," Energies, MDPI, vol. 15(4), pages 1-20, February.
    3. CH. Naga Sai Kalyan & B. Srikanth Goud & Ch. Rami Reddy & Mohit Bajaj & Naveen Kumar Sharma & Hassan Haes Alhelou & Pierluigi Siano & Salah Kamel, 2022. "Comparative Performance Assessment of Different Energy Storage Devices in Combined LFC and AVR Analysis of Multi-Area Power System," Energies, MDPI, vol. 15(2), pages 1-22, January.
    4. Elham Allahmoradi & Saeed Mirzamohammadi & Ali Bonyadi Naeini & Ali Maleki & Saleh Mobayen & Paweł Skruch, 2022. "Policy Instruments for the Improvement of Customers’ Willingness to Purchase Electric Vehicles: A Case Study in Iran," Energies, MDPI, vol. 15(12), pages 1-17, June.
    5. Dillip Kumar Mishra & Daria Złotecka & Li Li, 2022. "Significance of SMES Devices for Power System Frequency Regulation Scheme considering Distributed Energy Resources in a Deregulated Environment," Energies, MDPI, vol. 15(5), pages 1-32, February.
    6. Kaleem Ullah & Abdul Basit & Zahid Ullah & Fahad R. Albogamy & Ghulam Hafeez, 2022. "Automatic Generation Control in Modern Power Systems with Wind Power and Electric Vehicles," Energies, MDPI, vol. 15(5), pages 1-24, February.
    7. Mojtaba Nasiri & Saleh Mobayen & Behdad Faridpak & Afef Fekih & Arthur Chang, 2020. "Small-Signal Modeling of PMSG-Based Wind Turbine for Low Voltage Ride-Through and Artificial Intelligent Studies," Energies, MDPI, vol. 13(24), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "SMES-GCSC Coordination for Frequency and Voltage Regulation in a Multi-Area and Multi-Source Power System with Penetration of Electric Vehicles and Renewable Energy Sources," Energies, MDPI, vol. 16(1), pages 1-27, December.
    2. Abdulsamed Tabak, 2023. "Novel TI λ DND 2 N 2 Controller Application with Equilibrium Optimizer for Automatic Voltage Regulator," Sustainability, MDPI, vol. 15(15), pages 1-16, July.
    3. Shreya Vishnoi & Srete Nikolovski & More Raju & Mukesh Kumar Kirar & Ankur Singh Rana & Pawan Kumar, 2023. "Frequency Stabilization in an Interconnected Micro-Grid Using Smell Agent Optimization Algorithm-Tuned Classical Controllers Considering Electric Vehicles and Wind Turbines," Energies, MDPI, vol. 16(6), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    2. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    3. Shiyao Qin & Yuyang Chang & Zhen Xie & Shaolin Li, 2021. "Improved Virtual Inertia of PMSG-Based Wind Turbines Based on Multi-Objective Model-Predictive Control," Energies, MDPI, vol. 14(12), pages 1-20, June.
    4. Vincent N. Ogar & Sajjad Hussain & Kelum A. A. Gamage, 2023. "Load Frequency Control Using the Particle Swarm Optimisation Algorithm and PID Controller for Effective Monitoring of Transmission Line," Energies, MDPI, vol. 16(15), pages 1-17, August.
    5. Shihao Xie & Yun Zeng & Jing Qian & Fanjie Yang & Youtao Li, 2023. "CPSOGSA Optimization Algorithm Driven Cascaded 3DOF-FOPID-FOPI Controller for Load Frequency Control of DFIG-Containing Interconnected Power System," Energies, MDPI, vol. 16(3), pages 1-18, January.
    6. Bashar Abbas Fadheel & Noor Izzri Abdul Wahab & Ali Jafer Mahdi & Manoharan Premkumar & Mohd Amran Bin Mohd Radzi & Azura Binti Che Soh & Veerapandiyan Veerasamy & Andrew Xavier Raj Irudayaraj, 2023. "A Hybrid Grey Wolf Assisted-Sparrow Search Algorithm for Frequency Control of RE Integrated System," Energies, MDPI, vol. 16(3), pages 1-28, January.
    7. Tayyab Ali & Suheel Abdullah Malik & Amil Daraz & Muhammad Adeel & Sheraz Aslam & Herodotos Herodotou, 2023. "Load Frequency Control and Automatic Voltage Regulation in Four-Area Interconnected Power Systems Using a Gradient-Based Optimizer," Energies, MDPI, vol. 16(5), pages 1-27, February.
    8. Yuxuan Wang & Bingxu Zhang & Chenyang Li & Yongzhang Huang, 2022. "Collaborative Robust Optimization Strategy of Electric Vehicles and Other Distributed Energy Considering Load Flexibility," Energies, MDPI, vol. 15(8), pages 1-22, April.
    9. Matheus Sene Paulo & Andrei de Oliveira Almeida & Pedro Machado de Almeida & Pedro Gomes Barbosa, 2023. "Control of an Offshore Wind Farm Considering Grid-Connected and Stand-Alone Operation of a High-Voltage Direct Current Transmission System Based on Multilevel Modular Converters," Energies, MDPI, vol. 16(16), pages 1-27, August.
    10. Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "SMES-GCSC Coordination for Frequency and Voltage Regulation in a Multi-Area and Multi-Source Power System with Penetration of Electric Vehicles and Renewable Energy Sources," Energies, MDPI, vol. 16(1), pages 1-27, December.
    11. Ch. Naga Sai Kalyan & B. Srikanth Goud & Ch. Rami Reddy & Haitham S. Ramadan & Mohit Bajaj & Ziad M. Ali, 2021. "Water Cycle Algorithm Optimized Type II Fuzzy Controller for Load Frequency Control of a Multi-Area, Multi-Fuel System with Communication Time Delays," Energies, MDPI, vol. 14(17), pages 1-19, August.
    12. Kaleem Ullah & Zahid Ullah & Sheraz Aslam & Muhammad Salik Salam & Muhammad Asjad Salahuddin & Muhammad Farooq Umer & Mujtaba Humayon & Haris Shaheer, 2023. "Wind Farms and Flexible Loads Contribution in Automatic Generation Control: An Extensive Review and Simulation," Energies, MDPI, vol. 16(14), pages 1-34, July.
    13. Kaleem Ullah & Abdul Basit & Zahid Ullah & Rafiq Asghar & Sheraz Aslam & Ayman Yafoz, 2022. "Line Overload Alleviations in Wind Energy Integrated Power Systems Using Automatic Generation Control," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    14. Xiaohong Dong & Yang Ma & Xiaodan Yu & Xiangyu Wei & Yanqi Ren & Xin Zhang, 2023. "Secondary Frequency Regulation Control Strategy with Electric Vehicles Considering User Travel Uncertainty," Energies, MDPI, vol. 16(9), pages 1-18, April.
    15. Ajay Kumar & Deepak Kumar Gupta & Sriparna Roy Ghatak & Bhargav Appasani & Nicu Bizon & Phatiphat Thounthong, 2022. "A Novel Improved GSA-BPSO Driven PID Controller for Load Frequency Control of Multi-Source Deregulated Power System," Mathematics, MDPI, vol. 10(18), pages 1-41, September.
    16. Ahmad Saeed & Ebrahim Shahzad & Adnan Umar Khan & Athar Waseem & Muhammad Iqbal & Kaleem Ullah & Sheraz Aslam, 2023. "Three-Pond Model with Fuzzy Inference System-Based Water Level Regulation Scheme for Run-of-River Hydropower Plant," Energies, MDPI, vol. 16(6), pages 1-29, March.
    17. Elena Sosnina & Andrey Dar’enkov & Andrey Kurkin & Ivan Lipuzhin & Andrey Mamonov, 2022. "Review of Efficiency Improvement Technologies of Wind Diesel Hybrid Systems for Decreasing Fuel Consumption," Energies, MDPI, vol. 16(1), pages 1-38, December.
    18. Deepak Kumar Gupta & Ankit Kumar Soni & Amitkumar V. Jha & Sunil Kumar Mishra & Bhargav Appasani & Avireni Srinivasulu & Nicu Bizon & Phatiphat Thounthong, 2021. "Hybrid Gravitational–Firefly Algorithm-Based Load Frequency Control for Hydrothermal Two-Area System," Mathematics, MDPI, vol. 9(7), pages 1-15, March.
    19. Balvinder Singh & Adam Slowik & Shree Krishna Bishnoi, 2022. "A Dual-Stage Controller for Frequency Regulation in a Two-Area Realistic Diverse Hybrid Power System Using Bull–Lion Optimization," Energies, MDPI, vol. 15(21), pages 1-24, October.
    20. Andrey Kryukov & Konstantin Suslov & Pavel Ilyushin & Azat Akhmetshin, 2023. "Parameter Identification of Asynchronous Load Nodes," Energies, MDPI, vol. 16(4), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:8225-:d:962700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.