IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p251-d1015478.html
   My bibliography  Save this article

SMES-GCSC Coordination for Frequency and Voltage Regulation in a Multi-Area and Multi-Source Power System with Penetration of Electric Vehicles and Renewable Energy Sources

Author

Listed:
  • Hiramani Shukla

    (Electrical Engineering Department, Maulana Azad National Institute of Technology Bhopal, Bhopal 462003, India)

  • Srete Nikolovski

    (Power Engineering Department, Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University of Osijek, K. Trpimira 2B, HR-31000 Osijek, Croatia)

  • More Raju

    (Electrical Engineering Department, Maulana Azad National Institute of Technology Bhopal, Bhopal 462003, India)

  • Ankur Singh Rana

    (Department of Electrical and Electronics Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India)

  • Pawan Kumar

    (Electrical and Instrumentation Engineering Department, Thapar Institute of Engineering and Technology, Patiala 147004, India)

Abstract

Frequency, tie-line power, and the terminal voltages of synchronized generators must all be kept within prescribed limits to ensure the stability of an interconnected power grid through combined automatic generation control (AGC) and automatic voltage regulator (AVR) loops. Thermal power plants, electric vehicles, and renewable energy sources—including solar and wind, geothermal, and solar thermal power plants—form the two-area integrated power system in present research. A new cascade controller named the cascaded proportional integral derivative (PID) and fractional-order PID (CPID-FOPID) controller is proposed for the first time, whose performance is compared with the PID and FOPID controller. The results show that the proposed cascade controller outperforms PID and FOPID in delivering superior dynamic characteristics, including short settling times and low oscillation amplitudes. A new metaheuristic algorithm named the coot algorithm was applied to optimize the parameters of these controllers. The suggested controller outperforms FOPID in the combined AGC and AVR problem under uncertain conditions (random load disturbance, variable input of solar irradiation, and wind power). Robustness of the controller is tested with significant variation in the turbine time constant of the thermal and geothermal power plant. In this study, authors also investigated the best possible coordination between the superconducting magnetic energy storage (SMES) and gate-controlled series capacitor (GCSC) devices to control both voltage and frequency simultaneously. The effect of communication time to the power system is analyzed in this study. Additionally, the obtained results are satisfactorily validated using OPAL-RT real-time digital simulator.

Suggested Citation

  • Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "SMES-GCSC Coordination for Frequency and Voltage Regulation in a Multi-Area and Multi-Source Power System with Penetration of Electric Vehicles and Renewable Energy Sources," Energies, MDPI, vol. 16(1), pages 1-27, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:251-:d:1015478
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/251/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/251/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "A Particle Swarm Optimization Technique Tuned TID Controller for Frequency and Voltage Regulation with Penetration of Electric Vehicles and Distributed Generations," Energies, MDPI, vol. 15(21), pages 1-32, November.
    2. Ming Li & Wenqiang Du & Fuzhong Nian, 2014. "An Adaptive Particle Swarm Optimization Algorithm Based on Directed Weighted Complex Network," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-7, April.
    3. CH. Naga Sai Kalyan & B. Srikanth Goud & Ch. Rami Reddy & Mohit Bajaj & Naveen Kumar Sharma & Hassan Haes Alhelou & Pierluigi Siano & Salah Kamel, 2022. "Comparative Performance Assessment of Different Energy Storage Devices in Combined LFC and AVR Analysis of Multi-Area Power System," Energies, MDPI, vol. 15(2), pages 1-22, January.
    4. Ramana Pilla & Ahmad Taher Azar & Tulasichandra Sekhar Gorripotu, 2019. "Impact of Flexible AC Transmission System Devices on Automatic Generation Control with a Metaheuristic Based Fuzzy PID Controller," Energies, MDPI, vol. 12(21), pages 1-19, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    2. Shreya Vishnoi & Srete Nikolovski & More Raju & Mukesh Kumar Kirar & Ankur Singh Rana & Pawan Kumar, 2023. "Frequency Stabilization in an Interconnected Micro-Grid Using Smell Agent Optimization Algorithm-Tuned Classical Controllers Considering Electric Vehicles and Wind Turbines," Energies, MDPI, vol. 16(6), pages 1-25, March.
    3. Yifei Chen & Zhihan Fu, 2023. "Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    4. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    5. Shihao Xie & Yun Zeng & Jing Qian & Fanjie Yang & Youtao Li, 2023. "CPSOGSA Optimization Algorithm Driven Cascaded 3DOF-FOPID-FOPI Controller for Load Frequency Control of DFIG-Containing Interconnected Power System," Energies, MDPI, vol. 16(3), pages 1-18, January.
    6. Solomon Feleke & Balamurali Pydi & Raavi Satish & Degarege Anteneh & Kareem M. AboRas & Hossam Kotb & Mohammed Alharbi & Mohamed Abuagreb, 2023. "DE-Based Design of an Intelligent and Conventional Hybrid Control System with IPFC for AGC of Interconnected Power System," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    7. Tayyab Ali & Suheel Abdullah Malik & Amil Daraz & Muhammad Adeel & Sheraz Aslam & Herodotos Herodotou, 2023. "Load Frequency Control and Automatic Voltage Regulation in Four-Area Interconnected Power Systems Using a Gradient-Based Optimizer," Energies, MDPI, vol. 16(5), pages 1-27, February.
    8. Solomon Feleke & Raavi Satish & Workagegn Tatek & Almoataz Y. Abdelaziz & Adel El-Shahat, 2022. "DE-Algorithm-Optimized Fuzzy-PID Controller for AGC of Integrated Multi Area Power System with HVDC Link," Energies, MDPI, vol. 15(17), pages 1-21, August.
    9. Abdulsamed Tabak, 2023. "Novel TI λ DND 2 N 2 Controller Application with Equilibrium Optimizer for Automatic Voltage Regulator," Sustainability, MDPI, vol. 15(15), pages 1-16, July.
    10. Liyun Si & Wenping Cao & Xiangping Chen, 2020. "Active Disturbance Rejection Control of a Longitudinal Tunnel Ventilation System," Energies, MDPI, vol. 13(8), pages 1-16, April.
    11. Liqiang Jin & Ronglin Zhang & Binghao Tang & Hao Guo, 2020. "A Fuzzy-PID Scheme for Low Speed Control of a Vehicle While Going on a Downhill Road," Energies, MDPI, vol. 13(11), pages 1-18, June.
    12. Alimoradi, Mahmoud & Azgomi, Hossein & Asghari, Ali, 2022. "Trees Social Relations Optimization Algorithm: A new Swarm-Based metaheuristic technique to solve continuous and discrete optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 629-664.
    13. Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "A Particle Swarm Optimization Technique Tuned TID Controller for Frequency and Voltage Regulation with Penetration of Electric Vehicles and Distributed Generations," Energies, MDPI, vol. 15(21), pages 1-32, November.
    14. Jain, Sonal & Ramesh, Dharavath & Trivedi, Munesh C. & Edla, Damodar Reddy, 2023. "Evaluation of metaheuristic optimization algorithms for optimal allocation of surface water and groundwater resources for crop production," Agricultural Water Management, Elsevier, vol. 279(C).
    15. Alabi, Tobi Michael & Lawrence, Nathan P. & Lu, Lin & Yang, Zaiyue & Bhushan Gopaluni, R., 2023. "Automated deep reinforcement learning for real-time scheduling strategy of multi-energy system integrated with post-carbon and direct-air carbon captured system," Applied Energy, Elsevier, vol. 333(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:251-:d:1015478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.