IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5891-d1213681.html
   My bibliography  Save this article

Control of an Offshore Wind Farm Considering Grid-Connected and Stand-Alone Operation of a High-Voltage Direct Current Transmission System Based on Multilevel Modular Converters

Author

Listed:
  • Matheus Sene Paulo

    (Graduate Program of Electrical Engineering, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
    These authors contributed equally to this work.)

  • Andrei de Oliveira Almeida

    (Department of Electric and Electronics, Federal Centre of Technological Education of Minas Gerais, Leopoldina 36700-001, Brazil)

  • Pedro Machado de Almeida

    (Graduate Program of Electrical Engineering, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil)

  • Pedro Gomes Barbosa

    (Graduate Program of Electrical Engineering, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil
    These authors contributed equally to this work.)

Abstract

This work presents a control strategy for integrating an offshore wind farm into the onshore electrical grid using a high-voltage dc transmission system based on modular multilevel converters. The proposed algorithm allows the high-voltage DC system to operate in grid-connected or stand-alone modes, with the second case supplying power to local loads. In either mode, the modular multilevel rectifier works as a grid-forming converter, providing the reference voltage to the collector network. During grid-connected operation, the modular multilevel inverter regulates the DC link voltage while the generating units are controlled to maximize power extracted from the wind turbines. Conversely, in the event of grid disconnection, the onshore modular multilevel converter takes over the regulation of the AC voltage at the point of connection to the grid, ensuring energy supply to local loads. Simultaneously, the generator controller transitions from tracking the maximum power of the wind turbines to regulating the DC link voltage, preventing excessive power injection into the transmission DC link. Additionally, the turbine pitch angle control regulates the speed of the generator. Mathematical models in the synchronous reference frame were developed for each operation mode and used to design the converter’s controllers. A digital model of the wind power plant and a high-voltage dc transmission system was implemented and simulated in the PSCAD/EMTDC program. The system modeled includes two groups of wind turbines, generators, and back-to-back converters, in addition to a DC link with a rectifier and an inverter station, both based on modular multilevel converters with 18 submodules per arm, and a 320 k V /50 k m DC cable. Aggregate models were used to represent the two groups of wind turbines, where 30 and 15 smaller units operate in parallel, respectively. The performance of the proposed control strategy and the designed controllers was tested under three distinct scenarios: disconnection of the onshore converter from the AC grid, partial loss of a wind generator set, and reconnection of the onshore converter to the AC grid.

Suggested Citation

  • Matheus Sene Paulo & Andrei de Oliveira Almeida & Pedro Machado de Almeida & Pedro Gomes Barbosa, 2023. "Control of an Offshore Wind Farm Considering Grid-Connected and Stand-Alone Operation of a High-Voltage Direct Current Transmission System Based on Multilevel Modular Converters," Energies, MDPI, vol. 16(16), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5891-:d:1213681
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5891/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5891/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    2. Kaleem Ullah & Abdul Basit & Zahid Ullah & Fahad R. Albogamy & Ghulam Hafeez, 2022. "Automatic Generation Control in Modern Power Systems with Wind Power and Electric Vehicles," Energies, MDPI, vol. 15(5), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxuan Wang & Bingxu Zhang & Chenyang Li & Yongzhang Huang, 2022. "Collaborative Robust Optimization Strategy of Electric Vehicles and Other Distributed Energy Considering Load Flexibility," Energies, MDPI, vol. 15(8), pages 1-22, April.
    2. Kaleem Ullah & Zahid Ullah & Sheraz Aslam & Muhammad Salik Salam & Muhammad Asjad Salahuddin & Muhammad Farooq Umer & Mujtaba Humayon & Haris Shaheer, 2023. "Wind Farms and Flexible Loads Contribution in Automatic Generation Control: An Extensive Review and Simulation," Energies, MDPI, vol. 16(14), pages 1-34, July.
    3. Kaleem Ullah & Abdul Basit & Zahid Ullah & Rafiq Asghar & Sheraz Aslam & Ayman Yafoz, 2022. "Line Overload Alleviations in Wind Energy Integrated Power Systems Using Automatic Generation Control," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    4. Zahid Ullah & Kaleem Ullah & Cesar Diaz-Londono & Giambattista Gruosso & Abdul Basit, 2023. "Enhancing Grid Operation with Electric Vehicle Integration in Automatic Generation Control," Energies, MDPI, vol. 16(20), pages 1-18, October.
    5. Ahmad Saeed & Ebrahim Shahzad & Adnan Umar Khan & Athar Waseem & Muhammad Iqbal & Kaleem Ullah & Sheraz Aslam, 2023. "Three-Pond Model with Fuzzy Inference System-Based Water Level Regulation Scheme for Run-of-River Hydropower Plant," Energies, MDPI, vol. 16(6), pages 1-29, March.
    6. Hiramani Shukla & Srete Nikolovski & More Raju & Ankur Singh Rana & Pawan Kumar, 2022. "A Particle Swarm Optimization Technique Tuned TID Controller for Frequency and Voltage Regulation with Penetration of Electric Vehicles and Distributed Generations," Energies, MDPI, vol. 15(21), pages 1-32, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5891-:d:1213681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.