IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i21p7981-d955059.html
   My bibliography  Save this article

Machine Learning Approach for Smart Distribution Transformers Load Monitoring and Management System

Author

Listed:
  • Jayroop Ramesh

    (Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates)

  • Sakib Shahriar

    (Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates)

  • A. R. Al-Ali

    (Department of Computer Science and Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates)

  • Ahmed Osman

    (Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates)

  • Mostafa F. Shaaban

    (Department of Electrical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates)

Abstract

Distribution transformers are an integral part of the power distribution system network and emerging smart grids. With the increasing dynamic service requirements of consumers, there is a higher likelihood of transformer failures due to overloading, feeder line faults, and ineffective cooling. As a consequence, their general longevity has been diminished, and the maintenance efforts of utility providers prove inadequate in efficiently monitoring and detecting transformer conditions. Existing Supervisory Control and Data Acquisition (SCADA) metering points are sparsely allocated in the network, making fault detection in feeder lines limited. To address these issues, this work proposes an IoT system for real-time distribution transformer load monitoring and anomaly detection. The monitoring system consists of a low-cost IoT gateway and sensor module which collects a three-phase load current profile, and oil levels/temperature from a distributed transformer network, specifically at the feeder side. The data are communicated through the publish/subscribe paradigm to a cloud IoT pipeline and stored in a cloud database after processing. An anomaly detection algorithm in the form of Isolation Forest is implemented to intelligently detect likely faults within a time window of 24 h prior. A mobile application was implemented to interact with the cloud database, visualize the real-time conditions of the transformers, and track them geographically. The proposed work can therefore reduce transformer maintenance costs with real-time monitoring and facilitate predictive fault analysis.

Suggested Citation

  • Jayroop Ramesh & Sakib Shahriar & A. R. Al-Ali & Ahmed Osman & Mostafa F. Shaaban, 2022. "Machine Learning Approach for Smart Distribution Transformers Load Monitoring and Management System," Energies, MDPI, vol. 15(21), pages 1-19, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7981-:d:955059
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/21/7981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/21/7981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu Wen & Yubao Liu & Rongfu Sun & Yuewei Liu, 2022. "Research on Anomaly Detection of Wind Farm SCADA Wind Speed Data," Energies, MDPI, vol. 15(16), pages 1-18, August.
    2. Mahmoud Shaban & Mohammed F. Alsharekh, 2022. "Design of a Smart Distribution Panelboard Using IoT Connectivity and Machine Learning Techniques," Energies, MDPI, vol. 15(10), pages 1-17, May.
    3. Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
    4. Mariam Ibrahim & Ahmad Alsheikh & Feras M. Awaysheh & Mohammad Dahman Alshehri, 2022. "Machine Learning Schemes for Anomaly Detection in Solar Power Plants," Energies, MDPI, vol. 15(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zarko Janic & Nebojsa Gavrilov & Ivica Roketinec, 2023. "Influence of Cooling Management to Transformer Efficiency and Ageing," Energies, MDPI, vol. 16(12), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    2. Ahmed, Gaffer & Kishore, Nanda, 2024. "Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass," Renewable Energy, Elsevier, vol. 227(C).
    3. Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
    4. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    5. Islam, Md. Monirul & Shahbaz, Muhammad & Ahmed, Faroque, 2024. "Robot race in geopolitically risky environment: Exploring the Nexus between AI-powered tech industrial outputs and energy consumption in Singapore," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    6. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    7. James Ogundiran & Ehsan Asadi & Manuel Gameiro da Silva, 2024. "A Systematic Review on the Use of AI for Energy Efficiency and Indoor Environmental Quality in Buildings," Sustainability, MDPI, vol. 16(9), pages 1-30, April.
    8. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    9. Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
    10. Li, Ding & Zhang, Yufei & Yang, Zheng & Jin, Yaohui & Xu, Yanyan, 2024. "Sensing anomaly of photovoltaic systems with sequential conditional variational autoencoder," Applied Energy, Elsevier, vol. 353(PA).
    11. Latifa A. Yousef & Hibba Yousef & Lisandra Rocha-Meneses, 2023. "Artificial Intelligence for Management of Variable Renewable Energy Systems: A Review of Current Status and Future Directions," Energies, MDPI, vol. 16(24), pages 1-27, December.
    12. Cristina Nichiforov & Antonio Martinez-Molina & Miltiadis Alamaniotis, 2021. "An Intelligent Approach for Performing Energy-Driven Classification of Buildings Utilizing Joint Electricity–Gas Patterns," Energies, MDPI, vol. 14(22), pages 1-11, November.
    13. Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    14. Taeseop Park & Keunju Song & Jaeik Jeong & Hongseok Kim, 2023. "Convolutional Autoencoder-Based Anomaly Detection for Photovoltaic Power Forecasting of Virtual Power Plants," Energies, MDPI, vol. 16(14), pages 1-20, July.
    15. Wang, Xinlin & Flores, Robert & Brouwer, Jack & Papaefthymiou, Marios, 2022. "Real-time detection of electrical load anomalies through hyperdimensional computing," Energy, Elsevier, vol. 261(PA).
    16. Alexandra Akins & Derek Kultgen & Alexander Heifetz, 2023. "Anomaly Detection in Liquid Sodium Cold Trap Operation with Multisensory Data Fusion Using Long Short-Term Memory Autoencoder," Energies, MDPI, vol. 16(13), pages 1-19, June.
    17. Alexios Papaioannou & Asimina Dimara & Christoforos Papaioannou & Ioannis Papaioannou & Stelios Krinidis & Christos-Nikolaos Anagnostopoulos & Christos Korkas & Elias Kosmatopoulos & Dimosthenis Ioann, 2024. "Simulation of Malfunctions in Home Appliances’ Power Consumption," Energies, MDPI, vol. 17(17), pages 1-31, September.
    18. Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
    19. Liang, Xinbin & Chen, Siliang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2023. "Domain knowledge decomposition of building energy consumption and a hybrid data-driven model for 24-h ahead predictions," Applied Energy, Elsevier, vol. 344(C).
    20. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7981-:d:955059. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.