Machine Learning Approach for Smart Distribution Transformers Load Monitoring and Management System
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wu Wen & Yubao Liu & Rongfu Sun & Yuewei Liu, 2022. "Research on Anomaly Detection of Wind Farm SCADA Wind Speed Data," Energies, MDPI, vol. 15(16), pages 1-18, August.
- Mahmoud Shaban & Mohammed F. Alsharekh, 2022. "Design of a Smart Distribution Panelboard Using IoT Connectivity and Machine Learning Techniques," Energies, MDPI, vol. 15(10), pages 1-17, May.
- Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
- Mariam Ibrahim & Ahmad Alsheikh & Feras M. Awaysheh & Mohammad Dahman Alshehri, 2022. "Machine Learning Schemes for Anomaly Detection in Solar Power Plants," Energies, MDPI, vol. 15(3), pages 1-17, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zarko Janic & Nebojsa Gavrilov & Ivica Roketinec, 2023. "Influence of Cooling Management to Transformer Efficiency and Ageing," Energies, MDPI, vol. 16(12), pages 1-15, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
- Ahmed, Gaffer & Kishore, Nanda, 2024. "Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass," Renewable Energy, Elsevier, vol. 227(C).
- Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Islam, Md. Monirul & Shahbaz, Muhammad & Ahmed, Faroque, 2024. "Robot race in geopolitically risky environment: Exploring the Nexus between AI-powered tech industrial outputs and energy consumption in Singapore," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
- Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
- James Ogundiran & Ehsan Asadi & Manuel Gameiro da Silva, 2024. "A Systematic Review on the Use of AI for Energy Efficiency and Indoor Environmental Quality in Buildings," Sustainability, MDPI, vol. 16(9), pages 1-30, April.
- Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
- Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
- Li, Ding & Zhang, Yufei & Yang, Zheng & Jin, Yaohui & Xu, Yanyan, 2024. "Sensing anomaly of photovoltaic systems with sequential conditional variational autoencoder," Applied Energy, Elsevier, vol. 353(PA).
- Latifa A. Yousef & Hibba Yousef & Lisandra Rocha-Meneses, 2023. "Artificial Intelligence for Management of Variable Renewable Energy Systems: A Review of Current Status and Future Directions," Energies, MDPI, vol. 16(24), pages 1-27, December.
- Cristina Nichiforov & Antonio Martinez-Molina & Miltiadis Alamaniotis, 2021. "An Intelligent Approach for Performing Energy-Driven Classification of Buildings Utilizing Joint Electricity–Gas Patterns," Energies, MDPI, vol. 14(22), pages 1-11, November.
- Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Taeseop Park & Keunju Song & Jaeik Jeong & Hongseok Kim, 2023. "Convolutional Autoencoder-Based Anomaly Detection for Photovoltaic Power Forecasting of Virtual Power Plants," Energies, MDPI, vol. 16(14), pages 1-20, July.
- Wang, Xinlin & Flores, Robert & Brouwer, Jack & Papaefthymiou, Marios, 2022. "Real-time detection of electrical load anomalies through hyperdimensional computing," Energy, Elsevier, vol. 261(PA).
- Alexandra Akins & Derek Kultgen & Alexander Heifetz, 2023. "Anomaly Detection in Liquid Sodium Cold Trap Operation with Multisensory Data Fusion Using Long Short-Term Memory Autoencoder," Energies, MDPI, vol. 16(13), pages 1-19, June.
- Alexios Papaioannou & Asimina Dimara & Christoforos Papaioannou & Ioannis Papaioannou & Stelios Krinidis & Christos-Nikolaos Anagnostopoulos & Christos Korkas & Elias Kosmatopoulos & Dimosthenis Ioann, 2024. "Simulation of Malfunctions in Home Appliances’ Power Consumption," Energies, MDPI, vol. 17(17), pages 1-31, September.
- Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
- Liang, Xinbin & Chen, Siliang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2023. "Domain knowledge decomposition of building energy consumption and a hybrid data-driven model for 24-h ahead predictions," Applied Energy, Elsevier, vol. 344(C).
- Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
More about this item
Keywords
Internet of Things; big data; cloud computing; smart grid; load monitoring; deep learning; anomaly detection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7981-:d:955059. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.