IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3658-d817114.html
   My bibliography  Save this article

Design of a Smart Distribution Panelboard Using IoT Connectivity and Machine Learning Techniques

Author

Listed:
  • Mahmoud Shaban

    (Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
    Department of Electrical Engineering, College of Engineering, Qassim University, Unaizah 56452, Saudi Arabia)

  • Mohammed F. Alsharekh

    (Department of Electrical Engineering, College of Engineering, Qassim University, Unaizah 56452, Saudi Arabia)

Abstract

Electric load management through continuous monitoring and intelligent controlling has become a pressing requirement, particularly in light of rising electrical energy costs. The main purpose of this work is to realize a low-voltage electrical distribution panelboard that allows for real-time load monitoring and that provides a load forecasting feature at the household level. In this regard, we demonstrate the design and the implementation details of an IoT-enabled panelboard with smart features. An IoT dashboard was used to display the most significant information in terms of voltage, current, real power, reactive power, apparent power, power factor, and energy consumption. Additionally, the panel system offers visualization capabilities that were integrated into a cloud-based machine learning modeling. Among several algorithms used, the Gaussian SVM regression exhibited the best training and validation results for the load forecasting feature. It is possible for the proposed design to be simply developed to add more smart features such as fault detection and identification. This assists in an efficient management of energy demand at the consumer level.

Suggested Citation

  • Mahmoud Shaban & Mohammed F. Alsharekh, 2022. "Design of a Smart Distribution Panelboard Using IoT Connectivity and Machine Learning Techniques," Energies, MDPI, vol. 15(10), pages 1-17, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3658-:d:817114
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3658/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3658/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hahn, Heiko & Meyer-Nieberg, Silja & Pickl, Stefan, 2009. "Electric load forecasting methods: Tools for decision making," European Journal of Operational Research, Elsevier, vol. 199(3), pages 902-907, December.
    2. Dai, Yeming & Zhao, Pei, 2020. "A hybrid load forecasting model based on support vector machine with intelligent methods for feature selection and parameter optimization," Applied Energy, Elsevier, vol. 279(C).
    3. Sadaei, Hossein Javedani & de Lima e Silva, Petrônio Cândido & Guimarães, Frederico Gadelha & Lee, Muhammad Hisyam, 2019. "Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series," Energy, Elsevier, vol. 175(C), pages 365-377.
    4. Matar, Walid, 2018. "Households' response to changes in electricity pricing schemes: Bridging microeconomic and engineering principles," Energy Economics, Elsevier, vol. 75(C), pages 300-308.
    5. Aron Kondoro & Imed Ben Dhaou & Hannu Tenhunen & Nerey Mvungi, 2021. "A Low Latency Secure Communication Architecture for Microgrid Control," Energies, MDPI, vol. 14(19), pages 1-26, October.
    6. Morrisson Kaunda Mutuku & Stephen M. A. Muathe, 2020. "Nexus Analysis: Internet of Things and Business Performance," International Journal of Research in Business and Social Science (2147-4478), Center for the Strategic Studies in Business and Finance, vol. 9(4), pages 175-181, July.
    7. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    8. Lilia Tightiz & Hyosik Yang, 2020. "A Comprehensive Review on IoT Protocols’ Features in Smart Grid Communication," Energies, MDPI, vol. 13(11), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jayroop Ramesh & Sakib Shahriar & A. R. Al-Ali & Ahmed Osman & Mostafa F. Shaaban, 2022. "Machine Learning Approach for Smart Distribution Transformers Load Monitoring and Management System," Energies, MDPI, vol. 15(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arman Goudarzi & Farzad Ghayoor & Muhammad Waseem & Shah Fahad & Issa Traore, 2022. "A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook," Energies, MDPI, vol. 15(19), pages 1-32, September.
    2. Artur Felipe da Silva Veloso & José Valdemir Reis Júnior & Ricardo de Andrade Lira Rabelo & Jocines Dela-flora Silveira, 2021. "HyDSMaaS: A Hybrid Communication Infrastructure with LoRaWAN and LoraMesh for the Demand Side Management as a Service," Future Internet, MDPI, vol. 13(11), pages 1-45, October.
    3. Y, Kiguchi & Y, Heo & M, Weeks & R, Choudhary, 2019. "Predicting intra-day load profiles under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 173(C), pages 959-970.
    4. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    5. Sumit Saroha & Marta Zurek-Mortka & Jerzy Ryszard Szymanski & Vineet Shekher & Pardeep Singla, 2021. "Forecasting of Market Clearing Volume Using Wavelet Packet-Based Neural Networks with Tracking Signals," Energies, MDPI, vol. 14(19), pages 1-21, September.
    6. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    7. V. Y. Kondaiah & B. Saravanan, 2022. "Short-Term Load Forecasting with a Novel Wavelet-Based Ensemble Method," Energies, MDPI, vol. 15(14), pages 1-17, July.
    8. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    9. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    10. Rodrigo Antonio Sbardeloto Kraemer & Douglas Pereira Dias & Alisson Carlos da Silva & Marcos Aurelio Izumida Martins & Mathias Arno Ludwig, 2022. "Cost and Cybersecurity Challenges in the Commissioning of Microgrids in Critical Infrastructure: COGE Case Study," Energies, MDPI, vol. 15(8), pages 1-14, April.
    11. Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
    12. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    13. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    14. Zhang, Yue & Farnoosh, Arash, 2019. "Analyzing the dynamic impact of electricity futures on revenue and risk of renewable energy in China," Energy Policy, Elsevier, vol. 132(C), pages 678-690.
    15. Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
    16. Bangzhu Zhu & Jingyi Zhang & Chunzhuo Wan & Julien Chevallier & Ping Wang, 2023. "An evolutionary cost‐sensitive support vector machine for carbon price trend forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 741-755, July.
    17. Alexandros Menelaos Tzortzis & Sotiris Pelekis & Evangelos Spiliotis & Evangelos Karakolis & Spiros Mouzakitis & John Psarras & Dimitris Askounis, 2023. "Transfer Learning for Day-Ahead Load Forecasting: A Case Study on European National Electricity Demand Time Series," Mathematics, MDPI, vol. 12(1), pages 1-24, December.
    18. Javier Bueno & Desiderio Romero-Jordán & Pablo del Río, 2020. "Analysing the Drivers of Electricity Demand in Spain after the Economic Crisis," Energies, MDPI, vol. 13(20), pages 1-18, October.
    19. Liu, Cheng & Wang, Wei & Wang, Zhixia & Ding, Bei & Wu, Zhiqiang & Feng, Jingjing, 2024. "Data-driven modeling and fast adjustment for digital coded metasurfaces database: Application in adaptive electromagnetic energy harvesting," Applied Energy, Elsevier, vol. 365(C).
    20. Faheem Jan & Ismail Shah & Sajid Ali, 2022. "Short-Term Electricity Prices Forecasting Using Functional Time Series Analysis," Energies, MDPI, vol. 15(9), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3658-:d:817114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.