IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v331y2023ics0306261922015963.html
   My bibliography  Save this article

Robust event detection for residential load disaggregation

Author

Listed:
  • Yan, Lei
  • Tian, Wei
  • Wang, Hong
  • Hao, Xing
  • Li, Zuyi

Abstract

Nonintrusive load monitoring (NILM) can facilate the transition to energy-efficient and low-carbon buildings. Event detection is the first and most critical step in event-based NILM and can improve the efficiency and performance of NILM by decreasing inference times to the number of events with transient features extracted from events. However, existing event detection methods with fixed parameters may fail to achieve high accuracy in the case of uncertain and complicated residential load changes such as high fluctuation, long transition, and near simultaneity in both power and time dimensions. Besides, it is difficult to transfer the fixed parameter to new households with different load profiles. Furthermore, most of these methods prove that they are able to detect events but not able to extract features for load disaggregation. This paper proposes a robust event detection method with adaptive parameters to deal with such issues. Specifically, a window with adaptive margins, multi-window screening, and adaptive threshold method is proposed to detect events in aggregated load data with high sampling rate (>1 Hz). The proposed method captures the transitions by adaptively tuning parameters including window width, margin width, and thresholds. It can also achieve good performance with blind parameter setting so that it is suitable for unknown households or datasets. Furthermore, it captures complete transitions that are indispensable for transient feature extraction. Case studies on a 20 Hz dataset, the 50 Hz LIFTED dataset, and the 60 Hz BLUED dataset show that the proposed method can robustly outperform other state-of-the-art event detection methods. The robust performance of the proposed method is also verified by a cross validation of parameters among different datasets. Lastly, the proposed event detection method is demonstrated to have the merits of improving the performance of load disaggregation.

Suggested Citation

  • Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
  • Handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922015963
    DOI: 10.1016/j.apenergy.2022.120339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Bochao & Ye, Minxiang & Stankovic, Lina & Stankovic, Vladimir, 2020. "Non-intrusive load disaggregation solutions for very low-rate smart meter data," Applied Energy, Elsevier, vol. 268(C).
    2. Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
    3. Douglas Paulo Bertrand Renaux & Fabiana Pottker & Hellen Cristina Ancelmo & André Eugenio Lazzaretti & Carlos Raiumundo Erig Lima & Robson Ribeiro Linhares & Elder Oroski & Lucas da Silva Nolasco & Lu, 2020. "A Dataset for Non-Intrusive Load Monitoring: Design and Implementation," Energies, MDPI, vol. 13(20), pages 1-35, October.
    4. Yan, Lei & Tian, Wei & Han, Jiayu & Li, Zuy, 2022. "Event-driven two-stage solution to non-intrusive load monitoring," Applied Energy, Elsevier, vol. 311(C).
    5. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    6. Thi-Thu-Huong Le & Howon Kim, 2018. "Non-Intrusive Load Monitoring Based on Novel Transient Signal in Household Appliances with Low Sampling Rate," Energies, MDPI, vol. 11(12), pages 1-35, December.
    7. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
    8. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Gang & Li, Zhao & Luo, Zhao & Zhang, Tao & Lin, Mingliang & Li, Jiahao & Shen, Xin, 2024. "Dynamic adaptive event detection strategy based on power change-point weighting model," Applied Energy, Elsevier, vol. 361(C).
    2. Liu, Bo & Hou, Yufan & Luan, Wenpeng & Liu, Zishuai & Chen, Sheng & Yu, Yixin, 2023. "A divide-and-conquer method for compression and reconstruction of smart meter data," Applied Energy, Elsevier, vol. 336(C).
    3. Meng, Yan & Fan, Shuai & Shen, Yu & Xiao, Jucheng & He, Guangyu & Li, Zuyi, 2023. "Transmission and distribution network-constrained large-scale demand response based on locational customer directrix load for accommodating renewable energy," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).
    2. Elnour, Mariam & Fadli, Fodil & Himeur, Yassine & Petri, Ioan & Rezgui, Yacine & Meskin, Nader & Ahmad, Ahmad M., 2022. "Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
    4. Li, Chuyi & Zheng, Kedi & Guo, Hongye & Chen, Qixin, 2023. "A mixed-integer programming approach for industrial non-intrusive load monitoring," Applied Energy, Elsevier, vol. 330(PA).
    5. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    6. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    7. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    8. Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    9. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
    10. Wesley Angelino de Souza & Fernando Deluno Garcia & Fernando Pinhabel Marafão & Luiz Carlos Pereira da Silva & Marcelo Godoy Simões, 2019. "Load Disaggregation Using Microscopic Power Features and Pattern Recognition," Energies, MDPI, vol. 12(14), pages 1-18, July.
    11. James Ogundiran & Ehsan Asadi & Manuel Gameiro da Silva, 2024. "A Systematic Review on the Use of AI for Energy Efficiency and Indoor Environmental Quality in Buildings," Sustainability, MDPI, vol. 16(9), pages 1-30, April.
    12. Latifa A. Yousef & Hibba Yousef & Lisandra Rocha-Meneses, 2023. "Artificial Intelligence for Management of Variable Renewable Energy Systems: A Review of Current Status and Future Directions," Energies, MDPI, vol. 16(24), pages 1-27, December.
    13. Cristina Nichiforov & Antonio Martinez-Molina & Miltiadis Alamaniotis, 2021. "An Intelligent Approach for Performing Energy-Driven Classification of Buildings Utilizing Joint Electricity–Gas Patterns," Energies, MDPI, vol. 14(22), pages 1-11, November.
    14. Couraud, Benoit & Andoni, Merlinda & Robu, Valentin & Norbu, Sonam & Chen, Si & Flynn, David, 2023. "Responsive FLEXibility: A smart local energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    15. Everton Luiz de Aguiar & André Eugenio Lazzaretti & Bruna Machado Mulinari & Daniel Rodrigues Pipa, 2021. "Scattering Transform for Classification in Non-Intrusive Load Monitoring," Energies, MDPI, vol. 14(20), pages 1-20, October.
    16. Himeur, Yassine & Ghanem, Khalida & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2021. "Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives," Applied Energy, Elsevier, vol. 287(C).
    17. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    18. Tomasz Śmiałkowski & Andrzej Czyżewski, 2022. "Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters," Energies, MDPI, vol. 15(24), pages 1-23, December.
    19. Wang, Hu & Mao, Lei & Zhang, Heng & Wu, Qiang, 2024. "Multi-prediction of electric load and photovoltaic solar power in grid-connected photovoltaic system using state transition method," Applied Energy, Elsevier, vol. 353(PB).
    20. Luan, Wenpeng & Tian, Longfei & Zhao, Bochao, 2023. "Leveraging hybrid probabilistic multi-objective evolutionary algorithm for dynamic tariff design," Applied Energy, Elsevier, vol. 342(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:331:y:2023:i:c:s0306261922015963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.