IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4965-d1179918.html
   My bibliography  Save this article

Anomaly Detection in Liquid Sodium Cold Trap Operation with Multisensory Data Fusion Using Long Short-Term Memory Autoencoder

Author

Listed:
  • Alexandra Akins

    (Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
    Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27006, USA)

  • Derek Kultgen

    (Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA)

  • Alexander Heifetz

    (Nuclear Science and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA)

Abstract

Sodium-cooled fast reactors (SFR), which use high temperature fluid near ambient pressure as coolant, are one of the most promising types of GEN IV reactors. One of the unique challenges of SFR operation is purification of high temperature liquid sodium with a cold trap to prevent corrosion and obstructing small orifices. We have developed a deep learning long short-term memory (LSTM) autoencoder for continuous monitoring of a cold trap and detection of operational anomaly. Transient data were obtained from the Mechanisms Engineering Test Loop (METL) liquid sodium facility at Argonne National Laboratory. The cold trap purification at METL is monitored with 31 variables, which are sensors measuring fluid temperatures, pressures and flow rates, and controller signals. Loss-of-coolant type anomaly in the cold trap operation was generated by temporarily choking one of the blowers, which resulted in temperature and flow rate spikes. The input layer of the autoencoder consisted of all the variables involved in monitoring the cold trap. The LSTM autoencoder was trained on the data corresponding to cold trap startup and normal operation regime, with the loss function calculated as the mean absolute error (MAE). The loss during training was determined to follow log-normal density distribution. During monitoring, we investigated a performance of the LSTM autoencoder for different loss threshold values, set at a progressively increasing number of standard deviations from the mean. The anomaly signal in the data was gradually attenuated, while preserving the noise of the original time series, so that the signal-to-noise ratio (SNR) averaged across all sensors decreased below unity. Results demonstrate detection of anomalies with sensor-averaged SNR < 1.

Suggested Citation

  • Alexandra Akins & Derek Kultgen & Alexander Heifetz, 2023. "Anomaly Detection in Liquid Sodium Cold Trap Operation with Multisensory Data Fusion Using Long Short-Term Memory Autoencoder," Energies, MDPI, vol. 16(13), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4965-:d:1179918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4965/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4965/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyeonmin Kim & Jung-Taek Kim & Jaehyuk Eoh & Dong-Won Lim, 2018. "Development of a Physics-Based Monitoring Algorithm Detecting CO 2 Ingress Accidents in a Sodium-Cooled Fast Reactor," Energies, MDPI, vol. 12(1), pages 1-15, December.
    2. Konstantinos Prantikos & Lefteri H. Tsoukalas & Alexander Heifetz, 2022. "Physics-Informed Neural Network Solution of Point Kinetics Equations for a Nuclear Reactor Digital Twin," Energies, MDPI, vol. 15(20), pages 1-22, October.
    3. Muhammad S. Battikh & Artem A. Lenskiy, 2021. "Latent-Insensitive Autoencoders for Anomaly Detection," Mathematics, MDPI, vol. 10(1), pages 1-22, December.
    4. Martinez-Martinez, Sinuhe & Messai, Nadhir & Jeannot, Jean-Philippe & Nuzillard, Danielle, 2015. "Two neural network based strategies for the detection of a total instantaneous blockage of a sodium-cooled fast reactor," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 50-57.
    5. Mariam Ibrahim & Ahmad Alsheikh & Feras M. Awaysheh & Mohammad Dahman Alshehri, 2022. "Machine Learning Schemes for Anomaly Detection in Solar Power Plants," Energies, MDPI, vol. 15(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    2. Li, Ding & Zhang, Yufei & Yang, Zheng & Jin, Yaohui & Xu, Yanyan, 2024. "Sensing anomaly of photovoltaic systems with sequential conditional variational autoencoder," Applied Energy, Elsevier, vol. 353(PA).
    3. Gómez, M.J. & Castejón, C. & García-Prada, J.C., 2016. "Automatic condition monitoring system for crack detection in rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 239-247.
    4. Taeseop Park & Keunju Song & Jaeik Jeong & Hongseok Kim, 2023. "Convolutional Autoencoder-Based Anomaly Detection for Photovoltaic Power Forecasting of Virtual Power Plants," Energies, MDPI, vol. 16(14), pages 1-20, July.
    5. Jayroop Ramesh & Sakib Shahriar & A. R. Al-Ali & Ahmed Osman & Mostafa F. Shaaban, 2022. "Machine Learning Approach for Smart Distribution Transformers Load Monitoring and Management System," Energies, MDPI, vol. 15(21), pages 1-19, October.
    6. Ganapathy Ramesh & Jaganathan Logeshwaran & Thangavel Kiruthiga & Jaime Lloret, 2023. "Prediction of Energy Production Level in Large PV Plants through AUTO-Encoder Based Neural-Network (AUTO-NN) with Restricted Boltzmann Feature Extraction," Future Internet, MDPI, vol. 15(2), pages 1-20, January.
    7. Harleen Kaur Sandhu & Saran Srikanth Bodda & Abhinav Gupta, 2023. "A Future with Machine Learning: Review of Condition Assessment of Structures and Mechanical Systems in Nuclear Facilities," Energies, MDPI, vol. 16(6), pages 1-23, March.
    8. Kowal, Karol & Torabi, Mina, 2021. "Failure mode and reliability study for Electrical Facility of the High Temperature Engineering Test Reactor," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    9. Md Saif Hassan Onim & Zubayar Mahatab Md Sakif & Adil Ahnaf & Ahsan Kabir & Abul Kalam Azad & Amanullah Maung Than Oo & Rafina Afreen & Sumaita Tanjim Hridy & Mahtab Hossain & Taskeed Jabid & Md Sawka, 2022. "SolNet: A Convolutional Neural Network for Detecting Dust on Solar Panels," Energies, MDPI, vol. 16(1), pages 1-19, December.
    10. Sk. A. Shezan & Innocent Kamwa & Md. Fatin Ishraque & S. M. Muyeen & Kazi Nazmul Hasan & R. Saidur & Syed Muhammad Rizvi & Md Shafiullah & Fahad A. Al-Sulaiman, 2023. "Evaluation of Different Optimization Techniques and Control Strategies of Hybrid Microgrid: A Review," Energies, MDPI, vol. 16(4), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4965-:d:1179918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.