IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5293-d1191090.html
   My bibliography  Save this article

Convolutional Autoencoder-Based Anomaly Detection for Photovoltaic Power Forecasting of Virtual Power Plants

Author

Listed:
  • Taeseop Park

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea)

  • Keunju Song

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea)

  • Jaeik Jeong

    (Energy ICT Research Section, Electronics and Telecommunications Research Institute (ETRI), Daejeon 34129, Republic of Korea)

  • Hongseok Kim

    (Department of Electronic Engineering, Sogang University, Seoul 04107, Republic of Korea)

Abstract

Machine learning-based time-series forecasting has recently been intensively studied. Deep learning (DL), specifically deep neural networks (DNN) and long short-term memory (LSTM), are the popular approaches for this purpose. However, these methods have several problems. First, DNN needs a lot of data to avoid over-fitting. Without sufficient data, the model cannot be generalized so it may not be good for unseen data. Second, impaired data affect forecasting accuracy. In general, one trains a model assuming that normal data enters the input. However, when anomalous data enters the input, the forecasting accuracy of the model may decrease substantially, which emphasizes the importance of data integrity. This paper focuses on these two problems. In time-series forecasting, especially for photovoltaic (PV) forecasting, data from solar power plants are not sufficient. As solar panels are newly installed, a sufficiently long period of data cannot be obtained. We also find that many solar power plants may contain a substantial amount of anomalous data, e.g., 30%. In this regard, we propose a data preprocessing technique leveraging convolutional autoencoder and principal component analysis (PCA) to use insufficient data with a high rate of anomaly. We compare the performance of the PV forecasting model after applying the proposed anomaly detection in constructing a virtual power plant (VPP). Extensive experiments with 2517 PV sites in the Republic of Korea, which are used for VPP construction, confirm that the proposed technique can filter out anomaly PV sites with very high accuracy, e.g., 99%, which in turn contributes to reducing the forecasting error by 23%.

Suggested Citation

  • Taeseop Park & Keunju Song & Jaeik Jeong & Hongseok Kim, 2023. "Convolutional Autoencoder-Based Anomaly Detection for Photovoltaic Power Forecasting of Virtual Power Plants," Energies, MDPI, vol. 16(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5293-:d:1191090
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niklas Höhne & Matthew J. Gidden & Michel Elzen & Frederic Hans & Claire Fyson & Andreas Geiges & M. Louise Jeffery & Sofia Gonzales-Zuñiga & Silke Mooldijk & William Hare & Joeri Rogelj, 2021. "Wave of net zero emission targets opens window to meeting the Paris Agreement," Nature Climate Change, Nature, vol. 11(10), pages 820-822, October.
    2. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    3. Mariam Ibrahim & Ahmad Alsheikh & Feras M. Awaysheh & Mohammad Dahman Alshehri, 2022. "Machine Learning Schemes for Anomaly Detection in Solar Power Plants," Energies, MDPI, vol. 15(3), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sameer Al-Dahidi & Manoharan Madhiarasan & Loiy Al-Ghussain & Ahmad M. Abubaker & Adnan Darwish Ahmad & Mohammad Alrbai & Mohammadreza Aghaei & Hussein Alahmer & Ali Alahmer & Piero Baraldi & Enrico Z, 2024. "Forecasting Solar Photovoltaic Power Production: A Comprehensive Review and Innovative Data-Driven Modeling Framework," Energies, MDPI, vol. 17(16), pages 1-38, August.
    2. Wen-Chang Tsai & Chia-Sheng Tu & Chih-Ming Hong & Whei-Min Lin, 2023. "A Review of State-of-the-Art and Short-Term Forecasting Models for Solar PV Power Generation," Energies, MDPI, vol. 16(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liping Zhao & Xincheng Li & Xiangmei Li & Chenyang Ai, 2022. "Dynamic Changes and Regional Differences of Net Carbon Sequestration of Food Crops in the Yangtze River Economic Belt of China," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
    2. Karabulut, Halit & Yücesu, Hüseyin Serdar & ÇInar, Can & Aksoy, Fatih, 2009. "An experimental study on the development of a [beta]-type Stirling engine for low and moderate temperature heat sources," Applied Energy, Elsevier, vol. 86(1), pages 68-73, January.
    3. Wenran Gao & Hui Li & Karnowo & Bing Song & Shu Zhang, 2020. "Integrated Leaching and Thermochemical Technologies for Producing High-Value Products from Rice Husk: Leaching of Rice Husk with the Aqueous Phases of Bioliquids," Energies, MDPI, vol. 13(22), pages 1-15, November.
    4. Xiaohua, Wang & Yunrong, Hu & Xiaqing, Dia & Yuedong, Zhoa, 2006. "Analysis and simulation on rural energy-economy system on Shouyang County in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 139-151, April.
    5. Karatayev, Marat & Clarke, Michèle L., 2016. "A review of current energy systems and green energy potential in Kazakhstan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 491-504.
    6. Amaducci, Stefano & Yin, Xinyou & Colauzzi, Michele, 2018. "Agrivoltaic systems to optimise land use for electric energy production," Applied Energy, Elsevier, vol. 220(C), pages 545-561.
    7. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    8. Gorkemli Kazar & Arthur Kazar, 2014. "The Renewable Energy Production-Economic Development Nexus," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 312-319.
    9. Mecibah, Mohamed Salah & Boukelia, Taqiy Eddine & Tahtah, Reda & Gairaa, Kacem, 2014. "Introducing the best model for estimation the monthly mean daily global solar radiation on a horizontal surface (Case study: Algeria)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 194-202.
    10. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    11. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    12. B.F. Sihombing & Edy Lisdiyono, 2018. "Governance and the Role of Legal Aspects in the Fuel Pricing in Indonesia," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 168-176.
    13. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    14. Hemmings, Peter & Mulheron, Michael & Murphy, Richard J. & Prescott, Matt, 2023. "Investigating the robustness of UK airport net zero plans," Journal of Air Transport Management, Elsevier, vol. 113(C).
    15. Puppim de Oliveira, J. A., 2002. "The policymaking process for creating competitive assets for the use of biomass energy: the Brazilian alcohol programme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 129-140.
    16. Muhammad Yaseen Bhutto & Yasir Ali Soomro & Hailan Yang, 2022. "Extending the Theory of Planned Behavior: Predicting Young Consumer Purchase Behavior of Energy-Efficient Appliances (Evidence From Developing Economy)," SAGE Open, , vol. 12(1), pages 21582440221, February.
    17. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).
    18. Bakirci, Kadir & Colak, Derya, 2012. "Effect of a superheating and sub-cooling heat exchanger to the performance of a ground source heat pump system," Energy, Elsevier, vol. 44(1), pages 996-1004.
    19. Karunakaran Venkatesan & Uma Govindarajan & Padmanathan Kasinathan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen & Zbigniew Leonowicz, 2019. "Economic Analysis of HRES Systems with Energy Storage During Grid Interruptions and Curtailment in Tamil Nadu, India: A Hybrid RBFNOEHO Technique," Energies, MDPI, vol. 12(16), pages 1-26, August.
    20. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5293-:d:1191090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.