IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v15y2011i1p366-378.html
   My bibliography  Save this article

Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review

Author

Listed:
  • Damartzis, T.
  • Zabaniotou, A.

Abstract

The need for clean and environmental friendly fuels is leading the world to the production of biofuels and replacing conventional fuels by them. Second generation biofuels derived from lignocellulosic feedstocks tackle the drawbacks posed by the so-called first generation ones regarding feedstock availability and competition with the food industries. Thermochemical conversion of biomass to biofuels is a promising alternative route relying on well-established technologies including gasification and the Fischer-Tropsch synthesis. The conjunction of these processes creates a pathway through which the production of biofuels is sustainable. However, the multiple interactions between the processing steps greatly increase the difficulty in the accurate design of such processes. Detailed process modelling and optimization studies combined with process integration methods are necessary to demonstrate an effective way for the exploitation of these interactions. The aim of this work is to present and analyze the thermochemical conversion of biomass to second generation liquid biofuels as well as to indicate the emerging challenges and opportunities of the application of process integration on such processes towards innovative and sustainable solutions concerning climate concerns and energy security.

Suggested Citation

  • Damartzis, T. & Zabaniotou, A., 2011. "Thermochemical conversion of biomass to second generation biofuels through integrated process design--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 366-378, January.
  • Handle: RePEc:eee:rensus:v:15:y:2011:i:1:p:366-378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00255-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sudiro, Maria & Bertucco, Alberto, 2009. "Production of synthetic gasoline and diesel fuel by alternative processes using natural gas and coal: Process simulation and optimization," Energy, Elsevier, vol. 34(12), pages 2206-2214.
    2. Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
    3. Walter, Arnaldo & Ensinas, Adriano V., 2010. "Combined production of second-generation biofuels and electricity from sugarcane residues," Energy, Elsevier, vol. 35(2), pages 874-879.
    4. Ratnadhariya, J.K. & Channiwala, S.A., 2009. "Three zone equilibrium and kinetic free modeling of biomass gasifier – a novel approach," Renewable Energy, Elsevier, vol. 34(4), pages 1050-1058.
    5. Valero, Antonio & Usón, Sergio, 2006. "Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant," Energy, Elsevier, vol. 31(10), pages 1643-1655.
    6. Suurs, Roald A.A. & Hekkert, Marko P., 2009. "Competition between first and second generation technologies: Lessons from the formation of a biofuels innovation system in the Netherlands," Energy, Elsevier, vol. 34(5), pages 669-679.
    7. Rodrigues, Monica & Faaij, Andre P.C. & Walter, Arnaldo, 2003. "Techno-economic analysis of co-fired biomass integrated gasification/combined cycle systems with inclusion of economies of scale," Energy, Elsevier, vol. 28(12), pages 1229-1258.
    8. Seitarides, Th. & Athanasiou, C. & Zabaniotou, A., 2008. "Modular biomass gasification-based solid oxide fuel cells (SOFC) for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1251-1276, June.
    9. Han, Jun & Kim, Heejoon, 2008. "The reduction and control technology of tar during biomass gasification/pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 397-416, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaiwatanodom, Paphonwit & Vivanpatarakij, Supawat & Assabumrungrat, Suttichai, 2014. "Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production," Applied Energy, Elsevier, vol. 114(C), pages 10-17.
    2. Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
    3. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    4. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    6. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    7. Dias, Marina O.S. & Modesto, Marcelo & Ensinas, Adriano V. & Nebra, Silvia A. & Filho, Rubens Maciel & Rossell, Carlos E.V., 2011. "Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems," Energy, Elsevier, vol. 36(6), pages 3691-3703.
    8. Thallam Thattai, A. & Oldenbroek, V. & Schoenmakers, L. & Woudstra, T. & Aravind, P.V., 2016. "Experimental model validation and thermodynamic assessment on high percentage (up to 70%) biomass co-gasification at the 253MWe integrated gasification combined cycle power plant in Buggenum, The Neth," Applied Energy, Elsevier, vol. 168(C), pages 381-393.
    9. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    10. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    11. Qin, Shiyue & Zhang, Xuzhi & Wang, Ming & Cui, Hongyou & Li, Zhihe & Yi, Weiming, 2021. "Comparison of BGL and Lurgi gasification for coal to liquid fuels (CTL): Process modeling, simulation and thermodynamic analysis," Energy, Elsevier, vol. 229(C).
    12. Kou, Nannan & Zhao, Fu, 2011. "Techno-economical analysis of a thermo-chemical biofuel plant with feedstock and product flexibility under external disturbances," Energy, Elsevier, vol. 36(12), pages 6745-6752.
    13. Emami Taba, Leila & Irfan, Muhammad Faisal & Wan Daud, Wan Ashri Mohd & Chakrabarti, Mohammed Harun, 2012. "The effect of temperature on various parameters in coal, biomass and CO-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5584-5596.
    14. Sarkar, Susanjib & Kumar, Amit, 2010. "Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands," Energy, Elsevier, vol. 35(2), pages 582-591.
    15. Radenahmad, Nikdalila & Azad, Atia Tasfiah & Saghir, Muhammad & Taweekun, Juntakan & Bakar, Muhammad Saifullah Abu & Reza, Md Sumon & Azad, Abul Kalam, 2020. "A review on biomass derived syngas for SOFC based combined heat and power application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    16. Piazzi, Stefano & Patuzzi, Francesco & Baratieri, Marco, 2022. "Energy and exergy analysis of different biomass gasification coupled to Fischer-Tropsch synthesis configurations," Energy, Elsevier, vol. 249(C).
    17. Park, Sang-Woo & Jang, Cheol-Hyeon, 2012. "Effects of pyrolysis temperature on changes in fuel characteristics of biomass char," Energy, Elsevier, vol. 39(1), pages 187-195.
    18. Johansson, Daniella & Franck, Per-Åke & Pettersson, Karin & Berntsson, Thore, 2013. "Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances," Energy, Elsevier, vol. 59(C), pages 387-401.
    19. Wetterlund, Elisabeth & Pettersson, Karin & Harvey, Simon, 2011. "Systems analysis of integrating biomass gasification with pulp and paper production – Effects on economic performance, CO2 emissions and energy use," Energy, Elsevier, vol. 36(2), pages 932-941.
    20. Andreas Meurer & Jürgen Kern, 2021. "Fischer–Tropsch Synthesis as the Key for Decentralized Sustainable Kerosene Production," Energies, MDPI, vol. 14(7), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:15:y:2011:i:1:p:366-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.