IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9142-d991542.html
   My bibliography  Save this article

Tabular Open Circuit Voltage Modelling of Li-Ion Batteries for Robust SOC Estimation

Author

Listed:
  • Sneha Sundaresan

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada)

  • Bharath Chandra Devabattini

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada)

  • Pradeep Kumar

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada)

  • Krishna R. Pattipati

    (Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA)

  • Balakumar Balasingam

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada)

Abstract

Battery management systems depend on open circuit voltage (OCV) characterization for state of charge (SOC) estimation in real time. The traditional approach to OCV-SOC characterization involves collecting OCV-SOC data from sample battery cells and then fitting a polynomial model to this data. The parameters of these polynomial models are known as the OCV-parameters, or OCV-SOC parameters, in battery management systems and are used for real-time SOC estimation. Even though traditional OCV-SOC characterization approaches are able to abstract the OCV-SOC behavior of a battery in a few parameters, these parameters are only applicable in high precision computing systems. However, many practical battery applications do not have access to high-precision computing resources. The typical approach in a low-precision system is to round the OCV-parameters. This paper highlights the perils of rounding the OCV parameters and proposes an alternative OCV-SOC table. First, several existing OCV-SOC parameters are compared in terms of their expected system requirements and accuracy losses due to rounding. Then, a systematic optimization-based approach is introduced to create an OCV-SOC table that is robust to rounding. A formal performance evaluation metric is introduced to measure the robustness of the resulting OCV-SOC table. It is shown that the OCV-SOC table obtained through the proposed optimization approach outperforms the traditional parametric OCV-SOC models with respect to rounding.

Suggested Citation

  • Sneha Sundaresan & Bharath Chandra Devabattini & Pradeep Kumar & Krishna R. Pattipati & Balakumar Balasingam, 2022. "Tabular Open Circuit Voltage Modelling of Li-Ion Batteries for Robust SOC Estimation," Energies, MDPI, vol. 15(23), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9142-:d:991542
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9142/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9142/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, Mostafa Shaban & Raihan, Sheikh Arif & Balasingam, Balakumar, 2020. "A scaling approach for improved state of charge representation in rechargeable batteries," Applied Energy, Elsevier, vol. 267(C).
    2. Balakumar Balasingam & Mostafa Ahmed & Krishna Pattipati, 2020. "Battery Management Systems—Challenges and Some Solutions," Energies, MDPI, vol. 13(11), pages 1-19, June.
    3. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "A Study on the Open Circuit Voltage and State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature," Energies, MDPI, vol. 11(9), pages 1-17, September.
    4. Xinming Xu & Di Wu & Lei Yang & Huai Zhang & Guangjun Liu, 2020. "State Estimation of Lithium Batteries for Energy Storage Based on Dual Extended Kalman Filter," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, April.
    5. Kiarash Movassagh & Arif Raihan & Balakumar Balasingam & Krishna Pattipati, 2021. "A Critical Look at Coulomb Counting Approach for State of Charge Estimation in Batteries," Energies, MDPI, vol. 14(14), pages 1-33, July.
    6. Ines Baccouche & Sabeur Jemmali & Bilal Manai & Noshin Omar & Najoua Essoukri Ben Amara, 2017. "Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(6), pages 1-22, May.
    7. Alejandro Gismero & Erik Schaltz & Daniel-Ioan Stroe, 2020. "Recursive State of Charge and State of Health Estimation Method for Lithium-Ion Batteries Based on Coulomb Counting and Open Circuit Voltage," Energies, MDPI, vol. 13(7), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Barcellona & Lorenzo Codecasa & Silvia Colnago & Luigi Piegari, 2023. "Calendar Aging Effect on the Open Circuit Voltage of Lithium-Ion Battery," Energies, MDPI, vol. 16(13), pages 1-16, June.
    2. Aijun Tian & Weidong Xue & Chen Zhou & Yongquan Zhang & Haiying Dong, 2024. "Mechanism and Data-Driven Fusion SOC Estimation," Energies, MDPI, vol. 17(19), pages 1-16, October.
    3. Zhang, Jie & Xiao, Bo & Niu, Geng & Xie, Xuanzhi & Wu, Saixiang, 2024. "Joint estimation of state-of-charge and state-of-power for hybrid supercapacitors using fractional-order adaptive unscented Kalman filter," Energy, Elsevier, vol. 294(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prarthana Pillai & Sneha Sundaresan & Pradeep Kumar & Krishna R. Pattipati & Balakumar Balasingam, 2022. "Open-Circuit Voltage Models for Battery Management Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-25, September.
    2. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    3. Simone Barcellona & Lorenzo Codecasa & Silvia Colnago & Luigi Piegari, 2023. "Calendar Aging Effect on the Open Circuit Voltage of Lithium-Ion Battery," Energies, MDPI, vol. 16(13), pages 1-16, June.
    4. Kiarash Movassagh & Arif Raihan & Balakumar Balasingam & Krishna Pattipati, 2021. "A Critical Look at Coulomb Counting Approach for State of Charge Estimation in Batteries," Energies, MDPI, vol. 14(14), pages 1-33, July.
    5. Karimi, Danial & Behi, Hamidreza & Berecibar, Maitane & Van Mierlo, Joeri, 2023. "A comprehensive coupled 0D-ECM to 3D-CFD thermal model for heat pipe assisted-air cooling thermal management system under fast charge and discharge," Applied Energy, Elsevier, vol. 339(C).
    6. Saeed Mian Qaisar, 2020. "Event-Driven Coulomb Counting for Effective Online Approximation of Li-Ion Battery State of Charge," Energies, MDPI, vol. 13(21), pages 1-20, October.
    7. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Li, Huan & Xu, Wenhua & Fernandez, Carlos, 2022. "An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 260(C).
    8. Pranav Nair & Vinay Vakharia & Himanshu Borade & Milind Shah & Vishal Wankhede, 2023. "Predicting Li-Ion Battery Remaining Useful Life: An XDFM-Driven Approach with Explainable AI," Energies, MDPI, vol. 16(15), pages 1-19, July.
    9. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    10. Hou, Jiayang & Xu, Jun & Lin, Chuanping & Jiang, Delong & Mei, Xuesong, 2024. "State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method," Energy, Elsevier, vol. 290(C).
    11. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    12. Awab Baqar & Mamadou Baïlo Camara & Brayima Dakyo, 2022. "Energy Management in the Multi-Source Systems," Energies, MDPI, vol. 15(8), pages 1-4, April.
    13. Yonghong Xu & Cheng Li & Xu Wang & Hongguang Zhang & Fubin Yang & Lili Ma & Yan Wang, 2022. "Joint Estimation Method with Multi-Innovation Unscented Kalman Filter Based on Fractional-Order Model for State of Charge and State of Health Estimation," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    14. Marcio L. M. Amorim & Gabriel Augusto Ginja & João Paulo Carmo & Melkzedekue Moraes Alcântara Moreira & Adriano Almeida Goncalves Siqueira & Jose A. Afonso, 2022. "Low-Cost/High-Precision Smart Power Supply for Data Loggers," Energies, MDPI, vol. 16(1), pages 1-27, December.
    15. Thomas F. Landinger & Guenter Schwarzberger & Guenter Hofer & Matthias Rose & Andreas Jossen, 2021. "Power Line Communications for Automotive High Voltage Battery Systems: Channel Modeling and Coexistence Study with Battery Monitoring," Energies, MDPI, vol. 14(7), pages 1-26, March.
    16. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.
    17. Balakumar Balasingam & Mostafa Ahmed & Krishna Pattipati, 2020. "Battery Management Systems—Challenges and Some Solutions," Energies, MDPI, vol. 13(11), pages 1-19, June.
    18. Bizhong Xia & Guanyong Zhang & Huiyuan Chen & Yuheng Li & Zhuojun Yu & Yunchao Chen, 2022. "Verification Platform of SOC Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles," Energies, MDPI, vol. 15(9), pages 1-20, April.
    19. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    20. Md Ohirul Qays & Yonis Buswig & Md Liton Hossain & Ahmed Abu-Siada, 2020. "Active Charge Balancing Strategy Using the State of Charge Estimation Technique for a PV-Battery Hybrid System," Energies, MDPI, vol. 13(13), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9142-:d:991542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.