IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6244-d899051.html
   My bibliography  Save this article

An Attended-Free, All-in-One-Go, Automatic Analysis Assistant Software for E-liked Shape Contactless Inductive Power Transfer Device

Author

Listed:
  • Yumeng Lan

    (Department of Engineering and Applied Sciences, Sophia University, Tokyo 1028554, Japan)

  • Masafumi Miyatake

    (Department of Engineering and Applied Sciences, Sophia University, Tokyo 1028554, Japan)

Abstract

This paper presents automatic software for E-liked shaped contactless inductive power transfer (CIPT) device study and design that provides attended-free, multiple-case auto-generating and auto-deploying analysis in one go. It provides visualized and listed results in a design space or for optimizing solutions. To satisfy the demand for static and dynamic charging devices, the software provides specific cores, such as EE-, EI-, IE-, and II-shaped, with or without legs as optional core structures. The software contains three main parts: a user-friendly interface, analytic approaches providing grid analysis that represent the general performance in a designated parameter range, and optimal analysis for multi-objective optimization using a genetic algorithm (GA). The post-analysis processor converts the analysis results to easy-to-read outputs. Users can customize various parameters, such as core type, structural size, circuit configuration, materials, and analysis setting. Automatic functions, such as resistance and compensation calculation, are available for the convenience of the user. By applying one approach, or by combining them in a specific order, the software achieves designs that satisfy the user’s demands within the user-provided range. The software is built in Python and collaborates with a finite element method (FEM) solver, which is JMAG in this paper. Some examples are given to demonstrate the performance of the software.

Suggested Citation

  • Yumeng Lan & Masafumi Miyatake, 2022. "An Attended-Free, All-in-One-Go, Automatic Analysis Assistant Software for E-liked Shape Contactless Inductive Power Transfer Device," Energies, MDPI, vol. 15(17), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6244-:d:899051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuyu Geng & Tao Wang & Shiyun Xie & Yi Yang, 2022. "Analysis and Design of Wireless Power Transfer Systems Applied to Electrical Vehicle Supercapacitor Charge Using Variable-Resistance-Based Method," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Anahita Bagheri & Abbas Erfanian & Adib Abrishamifar, 2020. "A Systematic Methodology for Optimal Design of Wireless Power Transfer System Using Genetic Algorithm," Energies, MDPI, vol. 13(2), pages 1-17, January.
    3. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2021. "Two-Coil Receiver for Electrical Vehicles in Dynamic Wireless Power Transfer," Energies, MDPI, vol. 14(22), pages 1-14, November.
    4. Jinwook Kim & Do-Hyeon Kim & Jieun Kim & Young-Jin Park, 2021. "Wireless Power Transfer between Two Self-Resonant Coils over Medium Distance Supporting Optimal Impedance Matching Using Ferrite Core Transformers," Energies, MDPI, vol. 14(24), pages 1-15, December.
    5. Manuele Bertoluzzo & Stefano Giacomuzzi & Elisabetta Sieni, 2020. "Automatic Optimization of the Compensation Networks of a Wireless Power Transfer System," Energies, MDPI, vol. 13(20), pages 1-15, October.
    6. Fei Lu & Hua Zhang & Chris Mi, 2017. "A Review on the Recent Development of Capacitive Wireless Power Transfer Technology," Energies, MDPI, vol. 10(11), pages 1-30, November.
    7. Ching-Yao Liu & Guo-Bin Wang & Chih-Chiang Wu & Edward Yi Chang & Stone Cheng & Wei-Hua Chieng, 2021. "Derivation of the Resonance Mechanism for Wireless Power Transfer Using Class-E Amplifier," Energies, MDPI, vol. 14(3), pages 1-22, January.
    8. Emrullah Aydin & Mehmet Timur Aydemir & Ahmet Aksoz & Mohamed El Baghdadi & Omar Hegazy, 2022. "Inductive Power Transfer for Electric Vehicle Charging Applications: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Young-Jin Park, 2022. "Next-Generation Wireless Charging Systems for Mobile Devices," Energies, MDPI, vol. 15(9), pages 1-4, April.
    2. Fei Lu & Chong Zhu, 2022. "Advanced Wireless Power Transfer Technologies," Energies, MDPI, vol. 15(9), pages 1-2, April.
    3. Tommaso Campi & Silvano Cruciani & Francesca Maradei & Mauro Feliziani, 2023. "Electromagnetic Interference in Cardiac Implantable Electronic Devices Due to Dynamic Wireless Power Systems for Electric Vehicles," Energies, MDPI, vol. 16(9), pages 1-17, April.
    4. Ruikun Mai & Youyuan Zhang & Ruimin Dai & Yang Chen & Zhengyou He, 2018. "A Three-Coil Inductively Power Transfer System with Constant Voltage Output," Energies, MDPI, vol. 11(3), pages 1-13, March.
    5. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Jacek Maciej Stankiewicz, 2023. "Evaluation of the Influence of the Load Resistance on Power and Efficiency in the Square and Circular Periodic WPT Systems," Energies, MDPI, vol. 16(7), pages 1-19, March.
    7. Ben Minnaert & Franco Mastri & Nobby Stevens & Alessandra Costanzo & Mauro Mongiardo, 2018. "Coupling-Independent Capacitive Wireless Power Transfer Using Frequency Bifurcation," Energies, MDPI, vol. 11(7), pages 1-13, July.
    8. Pradeep Vishnuram & Suresh Panchanathan & Narayanamoorthi Rajamanickam & Vijayakumar Krishnasamy & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Review of Wireless Charging System: Magnetic Materials, Coil Configurations, Challenges, and Future Perspectives," Energies, MDPI, vol. 16(10), pages 1-31, May.
    9. You-Chen Weng & Chih-Chiang Wu & Edward Yi Chang & Wei-Hua Chieng, 2021. "Minimum Power Input Control for Class-E Amplifier Using Depletion-Mode Gallium Nitride High Electron Mobility Transistor," Energies, MDPI, vol. 14(8), pages 1-16, April.
    10. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Mincui Liang & Khalil El Khamlichi Drissi & Christopher Pasquier, 2023. "Self- and Mutual-Inductance Cross-Validation of Multi-Turn, Multi-Layer Square Coils for Dynamic Wireless Charging of Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-20, October.
    12. Jianyang Zhai & Xudong Zhang & Shiqi Zhao & Yuan Zou, 2023. "Modeling and Experiments of a Wireless Power Transfer System Considering Scenarios from In-Wheel-Motor Applications," Energies, MDPI, vol. 16(2), pages 1-20, January.
    13. Konstantina Dimitriadou & Nick Rigogiannis & Symeon Fountoukidis & Faidra Kotarela & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Current Trends in Electric Vehicle Charging Infrastructure; Opportunities and Challenges in Wireless Charging Integration," Energies, MDPI, vol. 16(4), pages 1-28, February.
    14. Cédric Lecluyse & Ben Minnaert & Michael Kleemann, 2021. "A Review of the Current State of Technology of Capacitive Wireless Power Transfer," Energies, MDPI, vol. 14(18), pages 1-22, September.
    15. Xie, Haonan & Jiang, Meihui & Zhang, Dongdong & Goh, Hui Hwang & Ahmad, Tanveer & Liu, Hui & Liu, Tianhao & Wang, Shuyao & Wu, Thomas, 2023. "IntelliSense technology in the new power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    16. Kyle John Williams & Kade Wiseman & Sara Deilami & Graham Town & Foad Taghizadeh, 2023. "A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer," Energies, MDPI, vol. 16(15), pages 1-26, August.
    17. Josué Lara-Reyes & Mario Ponce-Silva & Leobardo Hernández-González & Susana E. DeLeón-Aldaco & Claudia Cortés-García & Jazmin Ramirez-Hernandez, 2022. "Series RLC Resonant Circuit Used as Frequency Multiplier," Energies, MDPI, vol. 15(24), pages 1-18, December.
    18. Ali Jawad Alrubaie & Mohamed Salem & Khalid Yahya & Mahmoud Mohamed & Mohamad Kamarol, 2023. "A Comprehensive Review of Electric Vehicle Charging Stations with Solar Photovoltaic System Considering Market, Technical Requirements, Network Implications, and Future Challenges," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    19. Benitto Albert Rayan & Umashankar Subramaniam & S. Balamurugan, 2023. "Wireless Power Transfer in Electric Vehicles: A Review on Compensation Topologies, Coil Structures, and Safety Aspects," Energies, MDPI, vol. 16(7), pages 1-46, March.
    20. Desheng Zhang & Run Min & Zhigang Liu & Qiaoling Tong & Qiao Zhang & Ting Wu & Ming Zhang & Aosong Zhou, 2022. "Reducing Circling Currents in a VHF Class Φ 2 Inverter Based on a Fully Analytical Loss Model," Energies, MDPI, vol. 15(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6244-:d:899051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.