IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1752-d117272.html
   My bibliography  Save this article

A Review on the Recent Development of Capacitive Wireless Power Transfer Technology

Author

Listed:
  • Fei Lu

    (Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA 92182, USA)

  • Hua Zhang

    (Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA 92182, USA)

  • Chris Mi

    (Department of Electrical and Computer Engineering, San Diego State University, San Diego, CA 92182, USA)

Abstract

Capacitive power transfer (CPT) technology is an effective and important alternative to the conventional inductive power transfer (IPT). It utilizes high-frequency electric fields to transfer electric power, which has three distinguishing advantages: negligible eddy-current loss, relatively low cost and weight, and excellent misalignment performance. In recent years, the power level and efficiency of CPT systems has been significantly improved and has reached the power level suitable for electric vehicle charging applications. This paper reviews the latest developments in CPT technology, focusing on two key technologies: the compensation circuit topology and the capacitive coupler structure. The comparison with the IPT system and some critical issues in practical applications are also discussed. Based on these analyses, the future research direction can be developed and the applications of the CPT technology can be promoted.

Suggested Citation

  • Fei Lu & Hua Zhang & Chris Mi, 2017. "A Review on the Recent Development of Capacitive Wireless Power Transfer Technology," Energies, MDPI, vol. 10(11), pages 1-30, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1752-:d:117272
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aqeel Mahmood Jawad & Rosdiadee Nordin & Sadik Kamel Gharghan & Haider Mahmood Jawad & Mahamod Ismail, 2017. "Opportunities and Challenges for Near-Field Wireless Power Transfer: A Review," Energies, MDPI, vol. 10(7), pages 1-28, July.
    2. Ben Minnaert & Nobby Stevens, 2017. "Conjugate Image Theory Applied on Capacitive Wireless Power Transfer," Energies, MDPI, vol. 10(1), pages 1-15, January.
    3. Ben Minnaert & Nobby Stevens, 2017. "Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers," Energies, MDPI, vol. 10(9), pages 1-16, September.
    4. Il-Oun Lee & Joongheon Kim & Woojoo Lee, 2017. "A High-Efficient Low-Cost Converter for Capacitive Wireless Power Transfer Systems," Energies, MDPI, vol. 10(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suziana Ahmad & Reiji Hattori & Aam Muharam, 2021. "Generalized Circuit Model of Shielded Capacitive Power Transfer," Energies, MDPI, vol. 14(10), pages 1-19, May.
    2. Young-Jin Park, 2022. "Next-Generation Wireless Charging Systems for Mobile Devices," Energies, MDPI, vol. 15(9), pages 1-4, April.
    3. Kalina Detka & Krzysztof Górecki, 2022. "Wireless Power Transfer—A Review," Energies, MDPI, vol. 15(19), pages 1-21, October.
    4. Xie, Haonan & Jiang, Meihui & Zhang, Dongdong & Goh, Hui Hwang & Ahmad, Tanveer & Liu, Hui & Liu, Tianhao & Wang, Shuyao & Wu, Thomas, 2023. "IntelliSense technology in the new power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    5. Kyle John Williams & Kade Wiseman & Sara Deilami & Graham Town & Foad Taghizadeh, 2023. "A Review of Power Transfer Systems for Light Rail Vehicles: The Case for Capacitive Wireless Power Transfer," Energies, MDPI, vol. 16(15), pages 1-26, August.
    6. Ben Minnaert & Franco Mastri & Nobby Stevens & Alessandra Costanzo & Mauro Mongiardo, 2018. "Coupling-Independent Capacitive Wireless Power Transfer Using Frequency Bifurcation," Energies, MDPI, vol. 11(7), pages 1-13, July.
    7. Yong, Jin Yi & Tan, Wen Shan & Khorasany, Mohsen & Razzaghi, Reza, 2023. "Electric vehicles destination charging: An overview of charging tariffs, business models and coordination strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. Francisco Javier López-Alcolea & Javier Vázquez & Emilio J. Molina-Martínez & Pedro Roncero-Sánchez & Alfonso Parreño Torres, 2020. "Monte-Carlo Analysis of the Influence of the Electrical Component Tolerances on the Behavior of Series-Series- and LCC-Compensated IPT Systems," Energies, MDPI, vol. 13(14), pages 1-28, July.
    9. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Ruikun Mai & Youyuan Zhang & Ruimin Dai & Yang Chen & Zhengyou He, 2018. "A Three-Coil Inductively Power Transfer System with Constant Voltage Output," Energies, MDPI, vol. 11(3), pages 1-13, March.
    11. Qiu, K. & Ribberink, H. & Entchev, E., 2022. "Economic feasibility of electrified highways for heavy-duty electric trucks," Applied Energy, Elsevier, vol. 326(C).
    12. Bo Dong & Yang Chen & Jing Lian & Xiaohui Qu, 2022. "A Novel Compensation Circuit for Capacitive Power Transfer System to Realize Desired Constant Current and Constant Voltage Output," Energies, MDPI, vol. 15(4), pages 1-18, February.
    13. Cédric Lecluyse & Ben Minnaert & Michael Kleemann, 2021. "A Review of the Current State of Technology of Capacitive Wireless Power Transfer," Energies, MDPI, vol. 14(18), pages 1-22, September.
    14. Ryan Collin & Yu Miao & Alex Yokochi & Prasad Enjeti & Annette von Jouanne, 2019. "Advanced Electric Vehicle Fast-Charging Technologies," Energies, MDPI, vol. 12(10), pages 1-26, May.
    15. Yumeng Lan & Masafumi Miyatake, 2022. "An Attended-Free, All-in-One-Go, Automatic Analysis Assistant Software for E-liked Shape Contactless Inductive Power Transfer Device," Energies, MDPI, vol. 15(17), pages 1-23, August.
    16. Sizhao Lu & Xiaoting Deng & Wenbin Shu & Xiaochao Wei & Siqi Li, 2018. "A New ZVS Tuning Method for Double-Sided LCC Compensated Wireless Power Transfer System," Energies, MDPI, vol. 11(2), pages 1-14, February.
    17. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Jianyang Zhai & Xudong Zhang & Shiqi Zhao & Yuan Zou, 2023. "Modeling and Experiments of a Wireless Power Transfer System Considering Scenarios from In-Wheel-Motor Applications," Energies, MDPI, vol. 16(2), pages 1-20, January.
    19. Afshar, Shahab & Macedo, Pablo & Mohamed, Farog & Disfani, Vahid, 2021. "Mobile charging stations for electric vehicles — A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Minnaert & Franco Mastri & Nobby Stevens & Alessandra Costanzo & Mauro Mongiardo, 2018. "Coupling-Independent Capacitive Wireless Power Transfer Using Frequency Bifurcation," Energies, MDPI, vol. 11(7), pages 1-13, July.
    2. Ben Minnaert & Nobby Stevens, 2017. "Optimal Analytical Solution for a Capacitive Wireless Power Transfer System with One Transmitter and Two Receivers," Energies, MDPI, vol. 10(9), pages 1-16, September.
    3. Cédric Lecluyse & Ben Minnaert & Michael Kleemann, 2021. "A Review of the Current State of Technology of Capacitive Wireless Power Transfer," Energies, MDPI, vol. 14(18), pages 1-22, September.
    4. Il-Oun Lee & Joongheon Kim & Woojoo Lee, 2017. "A High-Efficient Low-Cost Converter for Capacitive Wireless Power Transfer Systems," Energies, MDPI, vol. 10(9), pages 1-14, September.
    5. Narayanamoorthi R. & Vimala Juliet A. & Bharatiraja Chokkalingam & Sanjeevikumar Padmanaban & Zbigniew M. Leonowicz, 2017. "Class E Power Amplifier Design and Optimization for the Capacitive Coupled Wireless Power Transfer System in Biomedical Implants," Energies, MDPI, vol. 10(9), pages 1-20, September.
    6. Admoon Andrawes & Rosdiadee Nordin & Nor Fadzilah Abdullah, 2019. "Energy-Efficient Downlink for Non-Orthogonal Multiple Access with SWIPT under Constrained Throughput," Energies, MDPI, vol. 13(1), pages 1-19, December.
    7. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    8. Jangyong Ahn & Seon-Eui Hong & Haerim Kim & Kyunghwan Song & Hyung-Do Choi & Seungyoung Ahn, 2021. "Improved Calculation Method of Coupling Factors for Low-Frequency Wireless Power Transfer Systems," IJERPH, MDPI, vol. 19(1), pages 1-12, December.
    9. Tommaso Campi & Silvano Cruciani & Mauro Feliziani, 2018. "Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil," Energies, MDPI, vol. 11(2), pages 1-15, February.
    10. Gerald K Ijemaru & Kenneth Li-Minn Ang & Jasmine KP Seng, 2022. "Wireless power transfer and energy harvesting in distributed sensor networks: Survey, opportunities, and challenges," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501477211, March.
    11. Aleksandra Tiurlikova & Nikita Stepanov & Konstantin Mikhaylov, 2019. "Wireless power transfer from unmanned aerial vehicle to low-power wide area network nodes: Performance and business prospects for LoRaWAN," International Journal of Distributed Sensor Networks, , vol. 15(11), pages 15501477198, November.
    12. Yujing Zhou & Chunhua Liu & Yongcan Huang, 2020. "Wireless Power Transfer for Implanted Medical Application: A Review," Energies, MDPI, vol. 13(11), pages 1-30, June.
    13. Wang, De'an & Zhang, Jiantao & Cui, Shumei & Bie, Zhi & Chen, Fuze & Zhu, Chunbo, 2024. "The state-of-the-arts of underwater wireless power transfer: A comprehensive review and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    14. Zbigniew Kaczmarczyk & Marcin Kasprzak & Adam Ruszczyk & Kacper Sowa & Piotr Zimoch & Krzysztof Przybyła & Kamil Kierepka, 2021. "Inductive Power Transfer Subsystem for Integrated Motor Drive," Energies, MDPI, vol. 14(5), pages 1-14, March.
    15. Enrico Bottaro & Santi Agatino Rizzo & Nunzio Salerno, 2022. "Circuit Models of Power MOSFETs Leading the Way of GaN HEMT Modelling—A Review," Energies, MDPI, vol. 15(9), pages 1-32, May.
    16. Diogo Matos & Ricardo A. M. Pereira & Helena Ribeiro & Bernardo Mendes & Daniel Belo & Arnaldo Oliveira & Nuno Borges Carvalho, 2022. "Charging Mobile Devices in Indoor Environments," Energies, MDPI, vol. 15(9), pages 1-16, May.
    17. Ming He & Sheng Wang & Xiang Zhong & Mingjie Guan, 2019. "Study of a Piezoelectric Energy Harvesting Floor Structure with Force Amplification Mechanism," Energies, MDPI, vol. 12(18), pages 1-10, September.
    18. Xin Dai & Xiaofei Li & Yanling Li & Pengqi Deng & Chunsen Tang, 2017. "A Maximum Power Transfer Tracking Method for WPT Systems with Coupling Coefficient Identification Considering Two-Value Problem," Energies, MDPI, vol. 10(10), pages 1-13, October.
    19. Seyed Ali Kashani & Alireza Soleimani & Ali Khosravi & Mojtaba Mirsalim, 2022. "State-of-the-Art Research on Wireless Charging of Electric Vehicles Using Solar Energy," Energies, MDPI, vol. 16(1), pages 1-27, December.
    20. Lantao Huang & Jiahao Zou & Yihan Zhou & Yan Hong & Jing Zhang & Zinan Ding, 2019. "Effect of Vertical Metal Plate on Transfer Efficiency of the Wireless Power Transfer System," Energies, MDPI, vol. 12(19), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1752-:d:117272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.