IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v297y2024ics0360544224009782.html
   My bibliography  Save this article

Performance improvement analysis of the regenerative dual-pressure organic flash cycle assisted by ejectors

Author

Listed:
  • Wang, Mingtao
  • Qu, Lin
  • Liu, Huanwei
  • Chen, Pengji
  • Wang, Xuan

Abstract

We proposed a dual-ejector-based regenerative dual–pressure organic flash cycle (DEj–RDPOFC) with higher performance than the RDPOFC. The effects of high and low pressures and the entrainment ratio of the ejector on the DEj–RDPOFC performance were analyzed from the viewpoints of thermodynamics and thermoeconomics. An exergy-flow distribution diagram revealed why the DEj–RDPOFC outperformed the RDPOFC. Next, the performances of the DEj–RDPOFC and dual–pressure organic Rankine cycle (DORC) were compared under the same boundary conditions. Finally, the performance of the DEj–RDPOFC was optimized using the nondominated sorting genetic algorithm (NSGA-II). According to the results, the power output of the high-pressure (HP) turbine of the DEj–RDPOFC can be increased by replacing the HP throttling valve (TV) with an ejector (which increases the working fluid dryness of the HP vapor separator and the mass flow rate of the HP turbine) and the low-pressure (LP) TV with an ejector (which increases the HP turbine expansion ratio). The DEj–RDPOFC achieves a higher maximum net power output (Wnet) and a lower corresponding levelized cost of electricity (LCOE) than the DORC. Under the optimum condition, the Wnet and LCOE of the DEj–RDPOFC are 9.71 % higher and 6.59 % lower, respectively, than those of the RDPOFC.

Suggested Citation

  • Wang, Mingtao & Qu, Lin & Liu, Huanwei & Chen, Pengji & Wang, Xuan, 2024. "Performance improvement analysis of the regenerative dual-pressure organic flash cycle assisted by ejectors," Energy, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009782
    DOI: 10.1016/j.energy.2024.131205
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009782
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Dongyu & Liu, Qiang & Ji, Zhongli, 2022. "Effects of two-phase expander on the thermoeconomics of organic double-flash cycles for geothermal power generation," Energy, Elsevier, vol. 239(PD).
    2. Aljundi, K. & Figueiredo, A. & Vieira, A. & Lapa, J. & Cardoso, R., 2024. "Geothermal energy system application: From basic standard performance to sustainability reflection," Renewable Energy, Elsevier, vol. 220(C).
    3. Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2014. "Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids," Applied Energy, Elsevier, vol. 115(C), pages 394-404.
    4. Ho, Tony & Mao, Samuel S. & Greif, Ralph, 2012. "Increased power production through enhancements to the Organic Flash Cycle (OFC)," Energy, Elsevier, vol. 45(1), pages 686-695.
    5. Mondal, Subha & De, Sudipta, 2017. "Ejector based organic flash combined power and refrigeration cycle (EBOFCP&RC) – A scheme for low grade waste heat recovery," Energy, Elsevier, vol. 134(C), pages 638-648.
    6. Ai, Tianchao & Chen, Hongwei & Zhong, Fanghao & Jia, Jiandong & Song, Yangfan, 2023. "Multi-objective optimization of a novel CCHP system with organic flash cycle based on different operating strategies," Energy, Elsevier, vol. 276(C).
    7. Yang, Chengdian & Yi, Fulong & Zhang, Jianyuan & Du, Genwang & Yin, Wei & Ma, Yuhua & Wang, Wei & You, Jinggang & Yu, Songtao, 2023. "Towards high-performance of organic flash cycle through cycle configuration improvement: State-of-art research," Energy, Elsevier, vol. 278(PA).
    8. Wang, Mingtao & Zhang, Juan & Liu, Qiyi & Tan, Luzhi, 2020. "Effects of critical temperature, critical pressure and dryness of working fluids on the performance of the transcritical organic rankine cycle," Energy, Elsevier, vol. 202(C).
    9. Li, Tailu & Yuan, Zhenhe & Li, Wei & Yang, Junlan & Zhu, Jialing, 2016. "Strengthening mechanisms of two-stage evaporation strategy on system performance for organic Rankine cycle," Energy, Elsevier, vol. 101(C), pages 532-540.
    10. Mondal, Subha & Alam, Shahbaz & De, Sudipta, 2018. "Performance assessment of a low grade waste heat driven organic flash cycle (OFC) with ejector," Energy, Elsevier, vol. 163(C), pages 849-862.
    11. Wang, Lv & Ge, Zhong & Xu, Jian & Xie, Jianbin & Xie, Zhiyong, 2023. "Thermo-economic evaluations of novel dual-heater regenerative organic flash cycle (DROFC)," Energy, Elsevier, vol. 283(C).
    12. Le, Van Long & Kheiri, Abdelhamid & Feidt, Michel & Pelloux-Prayer, Sandrine, 2014. "Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid," Energy, Elsevier, vol. 78(C), pages 622-638.
    13. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    14. Braimakis, Konstantinos & Karellas, Sotirios, 2023. "Exergy efficiency potential of dual-phase expansion trilateral and partial evaporation ORC with zeotropic mixtures," Energy, Elsevier, vol. 262(PB).
    15. R.V., Rohit & R., Vipin Raj & Kiplangat, Dennis C. & R., Veena & Jose, Rajan & Pradeepkumar, A.P. & Kumar, K. Satheesh, 2023. "Tracing the evolution and charting the future of geothermal energy research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Nemati, Arash & Nami, Hossein & Yari, Mortaza, 2018. "Assessment of different configurations of solar energy driven organic flash cycles (OFCs) via exergy and exergoeconomic methodologies," Renewable Energy, Elsevier, vol. 115(C), pages 1231-1248.
    17. Manente, Giovanni & Lazzaretto, Andrea & Bonamico, Eleonora, 2017. "Design guidelines for the choice between single and dual pressure layouts in organic Rankine cycle (ORC) systems," Energy, Elsevier, vol. 123(C), pages 413-431.
    18. Tsai, Yu-Chun & Feng, Yong-Qiang & Shuai, Yong & Lai, Jhao-Hong & Leung, Michael K.H. & Wei, Yen & Hsu, Hua-Yi & Hung, Tzu-Chen, 2023. "Experimental validation of a 0.3 kW ORC for the future purposes in the study of low-grade thermal to power conversion," Energy, Elsevier, vol. 285(C).
    19. Wang, Shicheng & Liu, Xin & Gu, Xueying & Huang, Xinyu & Li, Yu, 2023. "Analysis and multi-objective optimization of integrating a syngas-fed solid oxide fuel cell improved by a two-stage expander-organic flash cycle using an ejector and a desalination cycle," Energy, Elsevier, vol. 272(C).
    20. Liang, Youcai & Ye, Kai & Zhu, Yan & Lu, Jidong, 2023. "Thermodynamic analysis of two-stage and dual-temperature ejector refrigeration cycles driven by the waste heat of exhaust gas," Energy, Elsevier, vol. 278(C).
    21. Xie, Yingchun & Nie, Yutai & Li, Tailu & Zhang, Yao & Wang, Jingyi, 2023. "Flash evaporation strategy of organic Rankine cycle for geothermal power performance enhancement: A case study," Renewable Energy, Elsevier, vol. 212(C), pages 57-69.
    22. Baccioli, A. & Antonelli, M. & Desideri, U., 2017. "Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 199(C), pages 69-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Braimakis, Konstantinos & Karellas, Sotirios, 2024. "Thermodynamic investigation of integrated organic Rankine cycle-ejector vapor compression cooling cycle waste heat recovery configurations for cooling, heating and power production," Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Chengdian & Yi, Fulong & Zhang, Jianyuan & Du, Genwang & Yin, Wei & Ma, Yuhua & Wang, Wei & You, Jinggang & Yu, Songtao, 2023. "Towards high-performance of organic flash cycle through cycle configuration improvement: State-of-art research," Energy, Elsevier, vol. 278(PA).
    2. Hajialigol, Najmeh & Fattahi, Abolfazl & Karimi, Nader & Jamali, Mostafa & Keighobadi, Shervin, 2024. "Hybridized power-hydrogen generation using various configurations of Brayton-organic flash Rankine cycles fed by a sustainable fuel: Exergy and exergoeconomic analyses with ANN prediction," Energy, Elsevier, vol. 290(C).
    3. Kyoung Hoon Kim, 2019. "Thermodynamic Performance and Optimization Analysis of a Modified Organic Flash Cycle for the Recovery of Low-Grade Heat," Energies, MDPI, vol. 12(3), pages 1-21, January.
    4. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    5. Yu, Zeting & Feng, Chunyu & Lai, Yanhua & Xu, Guoping & Wang, Daohan, 2022. "Performance assessment and optimization of two novel cogeneration systems integrating proton exchange membrane fuel cell with organic flash cycle for low temperature geothermal heat recovery," Energy, Elsevier, vol. 243(C).
    6. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen, 2019. "Effects of heat source temperature and mixture composition on the combined superiority of dual-pressure evaporation organic Rankine cycle and zeotropic mixtures," Energy, Elsevier, vol. 174(C), pages 436-449.
    7. Wang, Lv & Ge, Zhong & Xu, Jian & Xie, Jianbin & Xie, Zhiyong, 2023. "Thermo-economic evaluations of novel dual-heater regenerative organic flash cycle (DROFC)," Energy, Elsevier, vol. 283(C).
    8. Hai, Tao & Zoghi, Mohammad & Abed, Hooman & Chauhan, Bhupendra Singh & Ahmed, Ahmed Najat, 2023. "Exergy-economic study and multi-objective optimization of a geothermal-based combined organic flash cycle and PEMFC for poly-generation purpose," Energy, Elsevier, vol. 268(C).
    9. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    10. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Wang, Zengli & Shao, Hua & Shao, Mingcheng & Dai, Zeyu & Zhang, Rao, 2024. "Thermodynamic analysis of a coupled system based on total flow cycle and partially evaporated organic Rankine cycle for hot dry rock utilization," Renewable Energy, Elsevier, vol. 225(C).
    12. Li, Jian & Yang, Zhen & Shen, Jun & Duan, Yuanyuan, 2023. "Enhancement effects of adding internal heat exchanger on dual-pressure evaporation organic Rankine cycle," Energy, Elsevier, vol. 265(C).
    13. Yuan Zhao & Chenghao Gao & Chengjun Li & Jie Sun & Chunyan Wang & Qiang Liu & Jun Zhao, 2022. "Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature," Energies, MDPI, vol. 15(17), pages 1-20, August.
    14. Meng, Dongyu & Liu, Qiang & Ji, Zhongli, 2022. "Effects of two-phase expander on the thermoeconomics of organic double-flash cycles for geothermal power generation," Energy, Elsevier, vol. 239(PD).
    15. Mondal, Subha & Alam, Shahbaz & De, Sudipta, 2018. "Performance assessment of a low grade waste heat driven organic flash cycle (OFC) with ejector," Energy, Elsevier, vol. 163(C), pages 849-862.
    16. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen, 2019. "Design and performance analyses for a novel organic Rankine cycle with supercritical-subcritical heat absorption process coupling," Applied Energy, Elsevier, vol. 235(C), pages 1400-1414.
    17. Tang, Junrong & Li, Qibin & Wang, Shukun & Yu, Haoshui, 2023. "Thermo-economic optimization and comparative analysis of different organic flash cycles for the supercritical CO2 recompression Brayton cycle waste heat recovery," Energy, Elsevier, vol. 278(PB).
    18. Chen, Ying & Liu, Yuxuan & Nam, Eun-Young & Zhang, Yang & Dahlak, Aida, 2023. "Exergoeconomic and exergoenvironmental analysis and optimization of an integrated double-flash-binary geothermal system and dual-pressure ORC using zeotropic mixtures; multi-objective optimization," Energy, Elsevier, vol. 283(C).
    19. Baccioli, A. & Antonelli, M. & Desideri, U., 2017. "Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 199(C), pages 69-87.
    20. Ouyang, Tiancheng & Su, Zixiang & Yang, Rui & Wang, Zhiping & Mo, Xiaoyu & Huang, Haozhong, 2021. "Advanced waste heat harvesting strategy for marine dual-fuel engine considering gas-liquid two-phase flow of turbine," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.