IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5360-d870338.html
   My bibliography  Save this article

Investigation of Energy-Saving Strategy for Parallel Variable Frequency Pump System Based on Improved Differential Evolution Algorithm

Author

Listed:
  • Xuecong Qin

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

  • Yin Luo

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

  • Shengyuan Chen

    (Wenling Fangyuan Test Co., Ltd., Wenling 317522, China)

  • Yunfei Chen

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

  • Yuejiang Han

    (Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China)

Abstract

This paper presents an energy-saving strategy that was applied to a parallel variable frequency pump system of a water circulation pumping station. Firstly, the mathematical model of shaft power consumption for the parallel pump system was established using quadratic polynomial fitting, with some constraints configured according to the system’s water supply demands. Then, the algorithm program was designed with the goal of minimizing the energy consumption through the application of an improved differential evolution algorithm. Additionally, the energy consumption model and constraints were integrated and simplified in order to adapt to the algorithm calculation. In the end, the algorithm was implemented according to the pump design parameters and supply targets of the pumping station. Meanwhile, a comparison was done between the differential evolution (DE) algorithm and the genetic algorithm (GA). Furthermore, an experimental test was conducted in an aluminum company in order to verify the applicability of the energy-saving algorithm in practice. The results demonstrated the feasibility of using the improved differential evolution algorithm in order to achieve a minimum energy consumption operation strategy; the results consequently manifested the superiority of the differential evolution algorithm in both computing time and optimal solution aspects.

Suggested Citation

  • Xuecong Qin & Yin Luo & Shengyuan Chen & Yunfei Chen & Yuejiang Han, 2022. "Investigation of Energy-Saving Strategy for Parallel Variable Frequency Pump System Based on Improved Differential Evolution Algorithm," Energies, MDPI, vol. 15(15), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5360-:d:870338
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manickavel Baranidharan & Rassiah Raja Singh, 2022. "AI Energy Optimal Strategy on Variable Speed Drives for Multi-Parallel Aqua Pumping System," Energies, MDPI, vol. 15(12), pages 1-29, June.
    2. Paul Waide & Conrad U. Brunner, 2011. "Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems," IEA Energy Papers 2011/7, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bortoni, Edson C. & Magalhães, Leonardo P. & Nogueira, Luiz A.H. & Bajay, Sérgio V. & Cassula, Agnelo M., 2020. "An assessment of energy efficient motors application by scenarios evaluation," Energy Policy, Elsevier, vol. 140(C).
    2. Sauer, Ildo L. & Tatizawa, Hédio & Salotti, Francisco A.M. & Mercedes, Sonia S., 2015. "A comparative assessment of Brazilian electric motors performance with minimum efficiency standards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 308-318.
    3. Fernández Oro, J.M. & Barrio Perotti, R. & Galdo Vega, M. & González, J., 2023. "Effect of the radial gap size on the deterministic flow in a centrifugal pump due to impeller-tongue interactions," Energy, Elsevier, vol. 278(PA).
    4. Sousa Santos, Vladimir & Cabello Eras, Juan J. & Cabello Ulloa, Mario J., 2024. "Evaluation of the energy saving potential in electric motors applying a load-based voltage control method," Energy, Elsevier, vol. 303(C).
    5. de Almeida, Anibal T. & Fong, Joao & Falkner, Hugh & Bertoldi, Paolo, 2017. "Policy options to promote energy efficient electric motors and drives in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1275-1286.
    6. Zi-Qiang Zhu & Dawei Liang, 2022. "Perspective of Thermal Analysis and Management for Permanent Magnet Machines, with Particular Reference to Hotspot Temperatures," Energies, MDPI, vol. 15(21), pages 1-51, November.
    7. Anibal T. de Almeida & Fernando J. T. E. Ferreira & João Fong, 2023. "Perspectives on Electric Motor Market Transformation for a Net Zero Carbon Economy," Energies, MDPI, vol. 16(3), pages 1-16, January.
    8. Christoph Sejkora & Lisa Kühberger & Fabian Radner & Alexander Trattner & Thomas Kienberger, 2020. "Exergy as Criteria for Efficient Energy Systems—A Spatially Resolved Comparison of the Current Exergy Consumption, the Current Useful Exergy Demand and Renewable Exergy Potential," Energies, MDPI, vol. 13(4), pages 1-51, February.
    9. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
    10. Oğuz Mısır & Mehmet Akar, 2022. "Efficiency and Core Loss Map Estimation with Machine Learning Based Multivariate Polynomial Regression Model," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
    11. F. Knobloch & J. -F. Mercure, 2016. "The behavioural aspect of green technology investments: a general positive model in the context of heterogeneous agents," Papers 1603.06888, arXiv.org.
    12. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).
    13. Paramonova, Svetlana & Thollander, Patrik & Ottosson, Mikael, 2015. "Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 472-483.
    14. Gang Lei & Jianguo Zhu & Youguang Guo & Chengcheng Liu & Bo Ma, 2017. "A Review of Design Optimization Methods for Electrical Machines," Energies, MDPI, vol. 10(12), pages 1-31, November.
    15. Hosain, Md Lokman & Bel Fdhila, Rebei & Rönnberg, Kristian, 2017. "Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines," Applied Energy, Elsevier, vol. 207(C), pages 624-633.
    16. Schulze, Rita & Buchert, Matthias, 2016. "Estimates of global REE recycling potentials from NdFeB magnet material," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 12-27.
    17. Guo, Jingquan & Ma, Xinqiang & Ahmadpour, Ali, 2021. "Electrical–mechanical evaluation of the multi–cascaded induction motors under different conditions," Energy, Elsevier, vol. 229(C).
    18. Danilo Ferreira de Souza & Francisco Antônio Marino Salotti & Ildo Luís Sauer & Hédio Tatizawa & Aníbal Traça de Almeida & Arnaldo Gakiya Kanashiro, 2022. "A Performance Evaluation of Three-Phase Induction Electric Motors between 1945 and 2020," Energies, MDPI, vol. 15(6), pages 1-31, March.
    19. Julio R. Gómez & Enrique C. Quispe & Rosaura del Pilar Castrillón & Percy R. Viego, 2020. "Identification of Technoeconomic Opportunities with the Use of Premium Efficiency Motors as Alternative for Developing Countries," Energies, MDPI, vol. 13(20), pages 1-16, October.
    20. Zuberi, M. Jibran S. & Bless, Frédéric & Chambers, Jonathan & Arpagaus, Cordin & Bertsch, Stefan S. & Patel, Martin K., 2018. "Excess heat recovery: An invisible energy resource for the Swiss industry sector," Applied Energy, Elsevier, vol. 228(C), pages 390-408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5360-:d:870338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.