IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5023-d859135.html
   My bibliography  Save this article

Real-Time Charging Scheduling and Optimization of Electric Buses in a Depot

Author

Listed:
  • Boud Verbrugge

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Abdul Mannan Rauf

    (Products Innovation & Systems Verification (PI&SV) Team, Powerdale (PWD), Witte Patersstraat 4, 1040 Brussel, Belgium)

  • Haaris Rasool

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Mohamed Abdel-Monem

    (Products Innovation & Systems Verification (PI&SV) Team, Powerdale (PWD), Witte Patersstraat 4, 1040 Brussel, Belgium)

  • Thomas Geury

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Mohamed El Baghdadi

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Omar Hegazy

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

Abstract

To improve the air quality in urban areas, diesel buses are getting replaced by battery electric buses (BEBs). This conversion introduces several challenges, such as the proper control of the charging process and a reduction in the operational costs, which can be addressed by introducing smart charging concepts for BEB fleets. Therefore, this paper proposes a real-time scheduling and optimization (RTSO) algorithm for the charging of multiple BEBs in a depot. The algorithm assigns a variable charging current to the different time slots the charging process of each BEB is divided to provide an optimal charging schedule that minimizes the charging cost, while satisfying the power limitations of the distribution network and maintaining the operation schedule of the BEBs. A genetic algorithm is used to solve the formulated cost function in real time. Several charging scenarios are tested in simulation, which show that a reduction in the charging cost up to 10% can be obtained under a dynamic electricity price scheme. Furthermore, the RTSO is implemented in a high-level charging management system, a new feature required to enable smart charging in practice, to test the developed algorithm with existing charging infrastructure. The experimental validation of the RTSO algorithm has proven the proper operation of the entire system.

Suggested Citation

  • Boud Verbrugge & Abdul Mannan Rauf & Haaris Rasool & Mohamed Abdel-Monem & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Real-Time Charging Scheduling and Optimization of Electric Buses in a Depot," Energies, MDPI, vol. 15(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5023-:d:859135
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5023/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5023/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su, Jun & Lie, T.T. & Zamora, Ramon, 2020. "A rolling horizon scheduling of aggregated electric vehicles charging under the electricity exchange market," Applied Energy, Elsevier, vol. 275(C).
    2. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Yajing Gao & Shixiao Guo & Jiafeng Ren & Zheng Zhao & Ali Ehsan & Yanan Zheng, 2018. "An Electric Bus Power Consumption Model and Optimization of Charging Scheduling Concerning Multi-External Factors," Energies, MDPI, vol. 11(8), pages 1-17, August.
    4. Rogge, Matthias & van der Hurk, Evelien & Larsen, Allan & Sauer, Dirk Uwe, 2018. "Electric bus fleet size and mix problem with optimization of charging infrastructure," Applied Energy, Elsevier, vol. 211(C), pages 282-295.
    5. Adnane Houbbadi & Rochdi Trigui & Serge Pelissier & Eduardo Redondo-Iglesias & Tanguy Bouton, 2019. "Optimal Scheduling to Manage an Electric Bus Fleet Overnight Charging," Energies, MDPI, vol. 12(14), pages 1-17, July.
    6. Rong-Ceng Leou & Jeng-Jiun Hung, 2017. "Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations," Energies, MDPI, vol. 10(4), pages 1-17, April.
    7. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    8. Syed Muhammad Arif & Tek Tjing Lie & Boon Chong Seet & Syed Muhammad Ahsan & Hassan Abbas Khan, 2020. "Plug-In Electric Bus Depot Charging with PV and ESS and Their Impact on LV Feeder," Energies, MDPI, vol. 13(9), pages 1-16, April.
    9. Zheng, Yanchong & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2018. "A novel real-time scheduling strategy with near-linear complexity for integrating large-scale electric vehicles into smart grid," Applied Energy, Elsevier, vol. 217(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young Kwan Ko & Young Dae Ko, 2023. "A Development of Optimal Design and Operation Algorithm for Battery-Powered Electric City Tour Bus System," Energies, MDPI, vol. 16(3), pages 1-16, January.
    2. Zhou, Yu & Wang, Hua & Wang, Yun & Yu, Bin & Tang, Tianpei, 2024. "Charging facility planning and scheduling problems for battery electric bus systems: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    3. Boud Verbrugge & Haaris Rasool & Mohammed Mahedi Hasan & Sajib Chakraborty & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Reliability Assessment of SiC-Based Depot Charging Infrastructure with Smart and Bidirectional (V2X) Charging Strategies for Electric Buses," Energies, MDPI, vol. 16(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    2. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    3. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    4. Zhou, Yu & Wang, Hua & Wang, Yun & Yu, Bin & Tang, Tianpei, 2024. "Charging facility planning and scheduling problems for battery electric bus systems: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    5. Amra Jahic & Felix Heider & Maik Plenz & Detlef Schulz, 2022. "Flexibility Quantification and the Potential for Its Usage in the Case of Electric Bus Depots with Unidirectional Charging," Energies, MDPI, vol. 15(10), pages 1-18, May.
    6. Andrzej Łebkowski, 2019. "Studies of Energy Consumption by a City Bus Powered by a Hybrid Energy Storage System in Variable Road Conditions," Energies, MDPI, vol. 12(5), pages 1-39, March.
    7. Brinkel, Nico & Zijlstra, Marle & van Bezu, Ronald & van Twuijver, Tim & Lampropoulos, Ioannis & van Sark, Wilfried, 2023. "A comparative analysis of charging strategies for battery electric buses in wholesale electricity and ancillary services markets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    8. Adnane Houbbadi & Rochdi Trigui & Serge Pelissier & Eduardo Redondo-Iglesias & Tanguy Bouton, 2019. "Optimal Scheduling to Manage an Electric Bus Fleet Overnight Charging," Energies, MDPI, vol. 12(14), pages 1-17, July.
    9. Zeng, Ziling & Wang, Shuaian & Qu, Xiaobo, 2022. "On the role of battery degradation in en-route charge scheduling for an electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    10. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    11. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
    12. Boud Verbrugge & Haaris Rasool & Mohammed Mahedi Hasan & Sajib Chakraborty & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Reliability Assessment of SiC-Based Depot Charging Infrastructure with Smart and Bidirectional (V2X) Charging Strategies for Electric Buses," Energies, MDPI, vol. 16(1), pages 1-15, December.
    13. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    14. Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).
    15. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    16. López-Ibarra, Jon Ander & Gaztañaga, Haizea & Saez-de-Ibarra, Andoni & Camblong, Haritza, 2020. "Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging," Applied Energy, Elsevier, vol. 280(C).
    17. Mena ElMenshawy & Ahmed Massoud, 2022. "Medium-Voltage DC-DC Converter Topologies for Electric Bus Fast Charging Stations: State-of-the-Art Review," Energies, MDPI, vol. 15(15), pages 1-20, July.
    18. Basma, Hussein & Mansour, Charbel & Haddad, Marc & Nemer, Maroun & Stabat, Pascal, 2023. "A novel method for co-optimizing battery sizing and charging strategy of battery electric bus fleets: An application to the city of Paris," Energy, Elsevier, vol. 285(C).
    19. Manzolli, Jônatas Augusto & Trovão, João Pedro & Antunes, Carlos Henggeler, 2022. "A review of electric bus vehicles research topics – Methods and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Cong, Yuan & Wang, Heqi & Bie, Yiming & Wu, Jiabin, 2023. "Double-battery configuration method for electric bus operation in cold regions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5023-:d:859135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.