IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9453-d1002465.html
   My bibliography  Save this article

Active Power Cooperative Control for Wind Power Clusters with Multiple Temporal and Spatial Scales

Author

Listed:
  • Minan Tang

    (College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Wenjuan Wang

    (College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Jiandong Qiu

    (College of Electrical and Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Detao Li

    (Datang Gansu Power Generation Co., Ltd., Lanzhou 730050, China)

  • Linyuan Lei

    (Datang Gansu Power Generation Co., Ltd., Lanzhou 730050, China)

Abstract

To improve the control of active power in wind power clusters, an active power hierarchical predictive control method with multiple temporal and spatial scales is proposed. First, the method from the spatial scale divides the wind power clusters into the cluster control layer, sub-cluster coordination layer and single wind farm power regulation layer. Simultaneously, from the temporal scale, the predicted data are divided layer by layer: the 15 min power prediction is deployed for the first layer; the 5 min power prediction is employed for the second layer; the 1 min power prediction is adopted for the third layer. Secondly, the prediction model was developed, and each hierarchical prediction was optimized using MPC. Thirdly, wind farms are dynamically clustered, and then the output power priority of wind farms is established. In addition, the active power of each wind farm is controlled according to the error between the dispatch value and the real-time power with feedback correction so that each wind farm achieves cooperative control with optimal power output. Finally, combined with the simulation of practical wind power clusters, the results show that the wind abandonment rate was reduced by 2.13%, and the dispatch of the blindness was overcome compared with the fixed proportional strategy. Therefore, this method can improve the efficiency of cooperative power generation.

Suggested Citation

  • Minan Tang & Wenjuan Wang & Jiandong Qiu & Detao Li & Linyuan Lei, 2022. "Active Power Cooperative Control for Wind Power Clusters with Multiple Temporal and Spatial Scales," Energies, MDPI, vol. 15(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9453-:d:1002465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, Yi & Lin, Heyun & Ho, S.L. & Yan, Jianhu & Dong, Jianning & Fang, Shuhua & Huang, Yunkai, 2015. "Overview of wind power generation in China: Status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 847-858.
    2. Ebrahimi, F.M. & Khayatiyan, A. & Farjah, E., 2016. "A novel optimizing power control strategy for centralized wind farm control system," Renewable Energy, Elsevier, vol. 86(C), pages 399-408.
    3. Xiangjie Liu & Le Feng & Xiaobing Kong, 2022. "A Comparative Study of Robust MPC and Stochastic MPC of Wind Power Generation System," Energies, MDPI, vol. 15(13), pages 1-22, June.
    4. Shahram Hanifi & Xiaolei Liu & Zi Lin & Saeid Lotfian, 2020. "A Critical Review of Wind Power Forecasting Methods—Past, Present and Future," Energies, MDPI, vol. 13(15), pages 1-24, July.
    5. Qiuhong Huang & Xiao Wang, 2022. "A Forecasting Model of Wind Power Based on IPSO–LSTM and Classified Fusion," Energies, MDPI, vol. 15(15), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingtao Huang & Gang Niu & Haiping Guan & Shuzhong Song, 2023. "Ultra-Short-Term Wind Power Prediction Based on LSTM with Loss Shrinkage Adam," Energies, MDPI, vol. 16(9), pages 1-13, April.
    2. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    3. Liu, Weiwei & Song, Yifan & Bi, Kexin, 2021. "Exploring the patent collaboration network of China's wind energy industry: A study based on patent data from CNIPA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    5. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    6. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    7. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
    8. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    9. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Kevin Tomsovic, 2022. "An MILP-Based Distributed Energy Management for Coordination of Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-20, September.
    10. Hanifi, Shahram & Cammarono, Andrea & Zare-Behtash, Hossein, 2024. "Advanced hyperparameter optimization of deep learning models for wind power prediction," Renewable Energy, Elsevier, vol. 221(C).
    11. Musa, S. Danlami & Zhonghua, Tang & Ibrahim, Abdullateef O. & Habib, Mukhtar, 2018. "China's energy status: A critical look at fossils and renewable options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2281-2290.
    12. Guo, Nai-Zhi & Shi, Ke-Zhong & Li, Bo & Qi, Liang-Wen & Wu, Hong-Hui & Zhang, Zi-Liang & Xu, Jian-Zhong, 2022. "A physics-inspired neural network model for short-term wind power prediction considering wake effects," Energy, Elsevier, vol. 261(PA).
    13. Yitian Xing & Fue-Sang Lien & William Melek & Eugene Yee, 2022. "A Multi-Hour Ahead Wind Power Forecasting System Based on a WRF-TOPSIS-ANFIS Model," Energies, MDPI, vol. 15(15), pages 1-35, July.
    14. Kisvari, Adam & Lin, Zi & Liu, Xiaolei, 2021. "Wind power forecasting – A data-driven method along with gated recurrent neural network," Renewable Energy, Elsevier, vol. 163(C), pages 1895-1909.
    15. Ye, Lin & Zhang, Cihang & Xue, Hui & Li, Jiachen & Lu, Peng & Zhao, Yongning, 2019. "Study of assessment on capability of wind power accommodation in regional power grids," Renewable Energy, Elsevier, vol. 133(C), pages 647-662.
    16. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    17. Deepu Dilip & Fernando Porté-Agel, 2017. "Wind Turbine Wake Mitigation through Blade Pitch Offset," Energies, MDPI, vol. 10(6), pages 1-17, May.
    18. Takuji Matsumoto & Yuji Yamada, 2023. "Improving the Efficiency of Hedge Trading Using Higher-Order Standardized Weather Derivatives for Wind Power," Energies, MDPI, vol. 16(7), pages 1-22, March.
    19. Amina Mseddi & Omar Naifar & Mohamed Rhaima & Lassaad Mchiri & Abdellatif Ben Makhlouf, 2023. "Robust Control for Torque Minimization in Wind Hybrid Generators: An H ∞ Approach," Mathematics, MDPI, vol. 11(16), pages 1-23, August.
    20. Zuo, Yangjie & Montesano, John & Singh, Chandra Veer, 2018. "Assessing progressive failure in long wind turbine blades under quasi-static and cyclic loads," Renewable Energy, Elsevier, vol. 119(C), pages 754-766.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9453-:d:1002465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.