IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4800-d852610.html
   My bibliography  Save this article

Simulation of Two-Phase Flow and Syngas Generation in Biomass Gasifier Based on Two-Fluid Model

Author

Listed:
  • Haochuang Wu

    (School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
    School of Primary Education, Chongqing Normal University, Chongqing 400070, China)

  • Chen Yang

    (School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
    Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China)

  • Zonglong Zhang

    (School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
    Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China)

  • Qiang Zhang

    (School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
    Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China)

Abstract

The efficient use of renewable energy is receiving more and more attention in the context of “carbon neutrality” and “carbon peaking”. For a long time, biomass has been used less efficiently as a renewable energy source, but with the development of fluidized biomass gasification technology, it can play an increasing role in industrial production. A fluidized bed biomass gasifier has a strong nonstationary process due to its complex energy–mass exchange, and analysis of its complex reaction process and products has relied on experiments for a long time. This paper uses a Euler–Euler two-fluid model to establish a three-dimensional CFD model of the fluidized bed biomass gasifier, on which factors affecting syngas generation are analyzed. The simulation shows that increasing the initial bed temperature can effectively improve syngas production, while increasing the air equivalent is not beneficial for syngas production.

Suggested Citation

  • Haochuang Wu & Chen Yang & Zonglong Zhang & Qiang Zhang, 2022. "Simulation of Two-Phase Flow and Syngas Generation in Biomass Gasifier Based on Two-Fluid Model," Energies, MDPI, vol. 15(13), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4800-:d:852610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4800/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4800/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Loha, Chanchal & Gu, Sai & De Wilde, Juray & Mahanta, Pinakeswar & Chatterjee, Pradip K., 2014. "Advances in mathematical modeling of fluidized bed gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 688-715.
    2. Li, Chunshan & Suzuki, Kenzi, 2009. "Tar property, analysis, reforming mechanism and model for biomass gasification--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 594-604, April.
    3. Hengli Zhang & Chunjiang Yu & Zhongyang Luo & Yu’an Li, 2020. "Investigation of Ash Deposition Dynamic Process in an Industrial Biomass CFB Boiler Burning High-Alkali and Low-Chlorine Fuel," Energies, MDPI, vol. 13(5), pages 1-11, March.
    4. Odgaard, Ole & Delman, Jørgen, 2014. "China׳s energy security and its challenges towards 2035," Energy Policy, Elsevier, vol. 71(C), pages 107-117.
    5. Chen Yang & Haochuang Wu & Kangjie Deng & Hangxing He & Li Sun, 2019. "Study on Powder Coke Combustion and Pollution Emission Characteristics of Fluidized Bed Boilers," Energies, MDPI, vol. 12(8), pages 1-18, April.
    6. Ahmad, Anis Atikah & Zawawi, Norfadhila Abdullah & Kasim, Farizul Hafiz & Inayat, Abrar & Khasri, Azduwin, 2016. "Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1333-1347.
    7. He, Pi-wen & Luo, Si-yi & Cheng, Gong & Xiao, Bo & Cai, Lei & Wang, Jin-bo, 2012. "Gasification of biomass char with air-steam in a cyclone furnace," Renewable Energy, Elsevier, vol. 37(1), pages 398-402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zepeng Sun & Yazhuo Wang & Jing Gu & Haoran Yuan & Zejian Liu & Leilei Cheng & Xiang Li & Xian Li, 2023. "CFD Simulation and Experimental Study on a Thermal Energy Storage–Updraft Solid Waste Gasification Device," Energies, MDPI, vol. 16(12), pages 1-33, June.
    2. Maksim A. Pakhomov & Viktor I. Terekhov, 2022. "Modeling of Turbulent Heat-Transfer Augmentation in Gas-Droplet Non-Boiling Flow in Diverging and Converging Axisymmetric Ducts with Sudden Expansion," Energies, MDPI, vol. 15(16), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    2. Huang, Zhen & Zheng, Anqing & Deng, Zhengbing & Wei, Guoqiang & Zhao, Kun & Chen, Dezhen & He, Fang & Zhao, Zengli & Li, Haibin & Li, Fanxing, 2020. "In-situ removal of toluene as a biomass tar model compound using NiFe2O4 for application in chemical looping gasification oxygen carrier," Energy, Elsevier, vol. 190(C).
    3. Zhang, Zhanming & Zhang, Lijun & Liu, Fang & Sun, Yifan & Shao, Yuewen & Sun, Kai & Zhang, Shu & Liu, Qing & Hu, Guangzhi & Hu, Xun, 2020. "Tailoring the surface properties of Ni/SiO2 catalyst with sulfuric acid for enhancing the catalytic efficiency for steam reforming of guaiacol," Renewable Energy, Elsevier, vol. 156(C), pages 423-439.
    4. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    5. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    6. Kaczor, Zuzanna & Buliński, Zbigniew & Werle, Sebastian, 2020. "Modelling approaches to waste biomass pyrolysis: a review," Renewable Energy, Elsevier, vol. 159(C), pages 427-443.
    7. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    8. Du, Shilin & Shu, Rui & Guo, Feiqiang & Mao, Songbo & Bai, Jiaming & Qian, Lin & Xin, Chengyun, 2022. "Porous coal char-based catalyst from coal gangue and lignite with high metal contents in the catalytic cracking of biomass tar," Energy, Elsevier, vol. 249(C).
    9. Kong, Zhaoyang & Lu, Xi & Jiang, Qingzhe & Dong, Xiucheng & Liu, Guixian & Elbot, Noah & Zhang, Zhonghua & Chen, Shi, 2019. "Assessment of import risks for natural gas and its implication for optimal importing strategies: A case study of China," Energy Policy, Elsevier, vol. 127(C), pages 11-18.
    10. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    11. Martínez-Lera, Susana & Pallarés Ranz, Javier, 2016. "On the development of a wood gasification modelling approach with special emphasis on primary devolatilization and tar formation and destruction phenomena," Energy, Elsevier, vol. 113(C), pages 643-652.
    12. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    13. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    14. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    15. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    16. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    17. Shao, Yanmin & Qiao, Han & Wang, Shouyang, 2017. "What determines China's crude oil importing trade patterns? Empirical evidences from 55 countries between 1992 and 2015," Energy Policy, Elsevier, vol. 109(C), pages 854-862.
    18. Askaripour, Hossein, 2020. "CFD modeling of gasification process in tapered fluidized bed gasifier," Energy, Elsevier, vol. 191(C).
    19. Li, Sisi & Khan, Sufyan Ullah & Yao, Yao & Chen, George S. & Zhang, Lin & Salim, Ruhul & Huo, Jiaying, 2022. "Estimating the long-run crude oil demand function of China: Some new evidence and policy options," Energy Policy, Elsevier, vol. 170(C).
    20. Tang, Erzi & Peng, Chong, 2017. "A macro- and microeconomic analysis of coal production in China," Resources Policy, Elsevier, vol. 51(C), pages 234-242.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4800-:d:852610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.