IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4580-d1166199.html
   My bibliography  Save this article

CFD Simulation and Experimental Study on a Thermal Energy Storage–Updraft Solid Waste Gasification Device

Author

Listed:
  • Zepeng Sun

    (Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
    Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Yazhuo Wang

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Jing Gu

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Haoran Yuan

    (Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
    Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Zejian Liu

    (Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
    Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Leilei Cheng

    (Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China
    Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Xiang Li

    (Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, China)

  • Xian Li

    (State Key Laboratory of Coal Combustion, Huazhong University of Sciences and Technology, Wuhan 430074, China)

Abstract

A thermal energy storage–updraft gasification device is a type of reactor that should be considered for use in solid waste gasification research that can save energy. However, the operating parameters and internal flow field during its operation remain unclear. In this study, a numerical model of the thermal energy storage–solid waste gasification device based on the computational fluid dynamics dense discrete phase model (CFD-DDPM) which had almost never been used before was established, and an innovative method that causes particles to be piled to simulate the gasification process was proposed according to the updraft fixed bed gasification characteristics; meanwhile, solid waste gasification experiments were conducted on the device. This study focused on the influence of moisture content and excess air coefficient on the gasification process of solid waste particles, and the velocity, pressure, temperature, and species distribution of the internal flow field of the device were analyzed. Simulation results showed that the higher the moisture content of particles, the greater the amplitude of changes in the internal physical field of the device. The fluid pressure drop is around 25 Pa–75 Pa for different working conditions. The combustible species of the gas of moist particles raise slightly with the increase in excess air coefficient, while the dry particles have the opposite effect. Compared with other gasification devices of the same type, the hydrogen production of this device is about 2–3 times higher. Our findings could facilitate the analysis, predict the operation status, and provide a theoretical basis for the improvement of this device.

Suggested Citation

  • Zepeng Sun & Yazhuo Wang & Jing Gu & Haoran Yuan & Zejian Liu & Leilei Cheng & Xiang Li & Xian Li, 2023. "CFD Simulation and Experimental Study on a Thermal Energy Storage–Updraft Solid Waste Gasification Device," Energies, MDPI, vol. 16(12), pages 1-33, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4580-:d:1166199
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wan, Zhanghao & Hu, Jianhang & Qi, Xianjin, 2021. "Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 225(C).
    2. Antimiani, Alessandro & Costantini, Valeria & Paglialunga, Elena, 2023. "Fossil fuels subsidy removal and the EU carbon neutrality policy," Energy Economics, Elsevier, vol. 119(C).
    3. Haochuang Wu & Chen Yang & Zonglong Zhang & Qiang Zhang, 2022. "Simulation of Two-Phase Flow and Syngas Generation in Biomass Gasifier Based on Two-Fluid Model," Energies, MDPI, vol. 15(13), pages 1-15, June.
    4. Umeki, Kentaro & Namioka, Tomoaki & Yoshikawa, Kunio, 2012. "Analysis of an updraft biomass gasifier with high temperature steam using a numerical model," Applied Energy, Elsevier, vol. 90(1), pages 38-45.
    5. Pao, Hsiao-Tien & Chen, Haipeng (Allan) & Li, Yi-Ying, 2015. "Competitive dynamics of energy, environment, and economy in the U.S," Energy, Elsevier, vol. 89(C), pages 449-460.
    6. Lu, Ding & Yoshikawa, Kunio & Ismail, Tamer M. & Abd El-Salam, M., 2018. "Assessment of the carbonized woody briquette gasification in an updraft fixed bed gasifier using the Euler-Euler model," Applied Energy, Elsevier, vol. 220(C), pages 70-86.
    7. Wang, Shuai & Shen, Yansong, 2020. "CFD-DEM study of biomass gasification in a fluidized bed reactor: Effects of key operating parameters," Renewable Energy, Elsevier, vol. 159(C), pages 1146-1164.
    8. Fernando, Niranjan & Narayana, Mahinsasa, 2016. "A comprehensive two dimensional Computational Fluid Dynamics model for an updraft biomass gasifier," Renewable Energy, Elsevier, vol. 99(C), pages 698-710.
    9. Ismail, T.M. & El-Salam, M. Abd, 2015. "Numerical and experimental studies on updraft gasifier HTAG," Renewable Energy, Elsevier, vol. 78(C), pages 484-497.
    10. Nidhoim Assoumani & Merlin Simo-Tagne & Fatima Kifani-Sahban & Ablain Tagne Tagne & Maryam El Marouani & Marcel Brice Obounou Akong & Yann Rogaume & Pierre Girods & André Zoulalian, 2021. "Numerical Study of Cylindrical Tropical Woods Pyrolysis Using Python Tool," Sustainability, MDPI, vol. 13(24), pages 1-23, December.
    11. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    2. Fugang Zhu & Laihong Shen & Pengcheng Xu & Haoran Yuan & Ming Hu & Jingwei Qi & Yong Chen, 2022. "Numerical Simulation of an Improved Updraft Biomass Gasifier Based on Aspen Plus," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    3. Lin, Junjie & Luo, Kun & Wang, Shuai & Sun, Liyan & Fan, Jianren, 2022. "Particle-scale study of coal-direct chemical looping combustion (CLC)," Energy, Elsevier, vol. 250(C).
    4. Ma, Y. & Li, Y.P. & Huang, G.H., 2023. "Planning China’s non-deterministic energy system (2021–2060) to achieve carbon neutrality," Applied Energy, Elsevier, vol. 334(C).
    5. Lu, Ding & Yoshikawa, Kunio & Ismail, Tamer M. & Abd El-Salam, M., 2018. "Assessment of the carbonized woody briquette gasification in an updraft fixed bed gasifier using the Euler-Euler model," Applied Energy, Elsevier, vol. 220(C), pages 70-86.
    6. Hung-Ta Wen & Jau-Huai Lu & Mai-Xuan Phuc, 2021. "Applying Artificial Intelligence to Predict the Composition of Syngas Using Rice Husks: A Comparison of Artificial Neural Networks and Gradient Boosting Regression," Energies, MDPI, vol. 14(10), pages 1-18, May.
    7. Ma, Hongchao & Zhang, Haonan, 2024. "Can green energy expansion develop the mineral resource market in East Asia?," Resources Policy, Elsevier, vol. 90(C).
    8. Setyawan, M. Ismail Bagus & Dafiqurrohman, Hafif & Akbar, Maha Hidayatullah & Surjosatyo, Adi, 2021. "Characterizing a two-stage downdraft biomass gasifier using a representative particle model," Renewable Energy, Elsevier, vol. 173(C), pages 750-767.
    9. Yan Li & Kailu Zhang & Bojiao Mu & Xinran Mo, 2024. "The long-term effects of transformation and upgrading policies on the market performance of China's coal-fire power generation industry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(7), pages 1-38, October.
    10. Liu, Xinyu & Yang, Jianping & Yang, Chunhe & Zhang, Zheyuan & Chen, Weizhong, 2023. "Numerical simulation on cavern support of compressed air energy storage(CAES)considering thermo-mechanical coupling effect," Energy, Elsevier, vol. 282(C).
    11. Elfarra, Barakat & Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2024. "The impact of energy security, energy mix, technological advancement, trade openness, and political stability on energy efficiency: Evidence from Arab countries," Energy, Elsevier, vol. 295(C).
    12. Wickramaarachchi, W.A.M.K.P. & Narayana, Mahinsasa, 2020. "Pyrolysis of single biomass particle using three-dimensional Computational Fluid Dynamics modelling," Renewable Energy, Elsevier, vol. 146(C), pages 1153-1165.
    13. Bello, Yusuf H. & Ahmed, Mahmoud A. & Ookawara, Shinichi & Elwardany, Ahmed E., 2022. "Numerical and experimental investigation on air distributor design of fluidized bed reactor of sawdust pyrolysis," Energy, Elsevier, vol. 239(PC).
    14. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    15. Chun Chih Chen, 2021. "The path to a 2025 nuclear-free Taiwan: An analysis of dynamic competition among emissions, energy, and economy," Energy & Environment, , vol. 32(4), pages 668-689, June.
    16. Michela Costa & Maurizio La Villetta & Daniele Piazzullo & Domenico Cirillo, 2021. "A Phenomenological Model of a Downdraft Biomass Gasifier Flexible to the Feedstock Composition and the Reactor Design," Energies, MDPI, vol. 14(14), pages 1-29, July.
    17. Ismail, Tamer M. & Kobayashi, Yasunori & Yoshikawa, Kunio & Lu, Ding & Kobori, Takahiro & Araki, Kuniomi & Kanazawa, Kiryu & Takahashi, Fumitake & Abd El-Salam, M., 2020. "Numerical investigation on the effect of electron injected air for thermal decomposition of solid waste," Applied Energy, Elsevier, vol. 269(C).
    18. Ejime Herbert Aniemeke, 2024. "The Microeconomic and Macroeconomic Implications of Fuel Subsidy Removal in Nigeria," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(4), pages 1777-1784, April.
    19. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    20. Theppitak, Sarut & Hungwe, Douglas & Ding, Lu & Xin, Dai & Yu, Guangsuo & Yoshikawa, Kunio, 2020. "Comparison on solid biofuel production from wet and dry carbonization processes of food wastes," Applied Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4580-:d:1166199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.