IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1424-d222539.html
   My bibliography  Save this article

Study on Powder Coke Combustion and Pollution Emission Characteristics of Fluidized Bed Boilers

Author

Listed:
  • Chen Yang

    (Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
    School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China)

  • Haochuang Wu

    (Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
    School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China)

  • Kangjie Deng

    (Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
    School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China)

  • Hangxing He

    (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China)

  • Li Sun

    (Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China
    School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China)

Abstract

The fluidized reactor is widely used in a number of chemical processes due to its high gas-particle contacting efficiency and excellent performance on solid mixing. An improved numerical framework based on the multiphase particle-in-cell (MP-PIC) method has been developed to simulate the processes of gas–solid flow and chemical reactions in a fluidized bed. Experiments have been carried out with a 3-MW circulating fluidized bed with a height of 24.5 m and a cross section of 1 m 2 . In order to obtain the relationship between pollutant discharge and operating conditions and to better guide the operation of the power plant, a series of tests and simulations were carried out. The distributions of temperature and gas concentration along the furnace from simulations achieved good accuracy compared with experimental data, indicating that this numerical framework is suitable for solving complex gas–solid flow and reactions in fluidized bed reactors. Through a series of experiments, the factors affecting the concentration of NO x and SO x emissions during the steady-state combustion of the normal temperature of powder coke were obtained, which provided some future guidance for the operation of a power plant burning the same kind of fuel.

Suggested Citation

  • Chen Yang & Haochuang Wu & Kangjie Deng & Hangxing He & Li Sun, 2019. "Study on Powder Coke Combustion and Pollution Emission Characteristics of Fluidized Bed Boilers," Energies, MDPI, vol. 12(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1424-:d:222539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leckner, Bo & Gómez-Barea, Alberto, 2014. "Oxy-fuel combustion in circulating fluidized bed boilers," Applied Energy, Elsevier, vol. 125(C), pages 308-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueshen Wang & Zheng Gan & Shengwei Xin & Chunzhen Yang, 2023. "Study on Gas–Solid Two–Phase Flow Characteristics of One–Furnace with Two–Tower Semi–Dry Desulfurization in Circulating Fluidized Bed Boiler," Energies, MDPI, vol. 16(4), pages 1-13, February.
    2. Jolanta Telenga-Kopyczyńska & Izabela Jonek-Kowalska, 2021. "Algorithm for Selecting Best Available Techniques in Polish Coking Plants Supporting Multi-Criteria Investment Decisions in European Environmental Conditions," Energies, MDPI, vol. 14(9), pages 1-24, May.
    3. Haochuang Wu & Chen Yang & Zonglong Zhang & Qiang Zhang, 2022. "Simulation of Two-Phase Flow and Syngas Generation in Biomass Gasifier Based on Two-Fluid Model," Energies, MDPI, vol. 15(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shiyuan & Li, Haoyu & Li, Wei & Xu, Mingxin & Eddings, Eric G. & Ren, Qiangqiang & Lu, Qinggang, 2017. "Coal combustion emission and ash formation characteristics at high oxygen concentration in a 1MWth pilot-scale oxy-fuel circulating fluidized bed," Applied Energy, Elsevier, vol. 197(C), pages 203-211.
    2. Bu, Changsheng & Gómez-Barea, Alberto & Chen, Xiaoping & Leckner, Bo & Liu, Daoyin & Pallarès, David & Lu, Ping, 2016. "Effect of CO2 on oxy-fuel combustion of coal-char particles in a fluidized bed: Modeling and comparison with the conventional mode of combustion," Applied Energy, Elsevier, vol. 177(C), pages 247-259.
    3. Li, Shiyuan & Xu, Mingxin & Jia, Lufei & Tan, Li & Lu, Qinggang, 2016. "Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed," Applied Energy, Elsevier, vol. 173(C), pages 197-209.
    4. Hu, Yukun & Wang, Jihong & Tan, CK & Sun, Chenggong & Liu, Hao, 2018. "Coupling detailed radiation model with process simulation in Aspen Plus: A case study on fluidized bed combustor," Applied Energy, Elsevier, vol. 227(C), pages 168-179.
    5. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
    6. Seddighi, Sadegh, 2017. "Design of large scale oxy-fuel fluidized bed boilers: Constant thermal power and constant furnace size scenarios," Energy, Elsevier, vol. 118(C), pages 1286-1294.
    7. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei & Lu, Qinggang, 2017. "The characteristics of recycled NO reduction over char during oxy-fuel fluidized bed combustion," Applied Energy, Elsevier, vol. 190(C), pages 553-562.
    8. Chen, Yuyang & Yang, Shiliang & Hu, Jianhang & Wang, Hua, 2023. "Investigation of the oxy-fuel combustion process in the full-loop circulating fluidized bed," Energy, Elsevier, vol. 283(C).
    9. Gao, Mingming & Hong, Feng & Liu, Jizhen, 2017. "Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units," Applied Energy, Elsevier, vol. 185(P1), pages 463-471.
    10. Ling, Jester Lih Jie & Yang, Won & Park, Han Saem & Lee, Ha Eun & Lee, See Hoon, 2023. "A comparative review on advanced biomass oxygen fuel combustion technologies for carbon capture and storage," Energy, Elsevier, vol. 284(C).
    11. Xu, Mingxin & Li, Shiyuan & Wu, Yinghai & Jia, Lufei, 2017. "Reduction of recycled NO over char during oxy-fuel fluidized bed combustion: Effects of operating parameters," Applied Energy, Elsevier, vol. 199(C), pages 310-322.
    12. Najmus S. Sifat & Yousef Haseli, 2019. "A Critical Review of CO 2 Capture Technologies and Prospects for Clean Power Generation," Energies, MDPI, vol. 12(21), pages 1-33, October.
    13. Chen, Shiyi & Yu, Ran & Soomro, Ahsanullah & Xiang, Wenguo, 2019. "Thermodynamic assessment and optimization of a pressurized fluidized bed oxy-fuel combustion power plant with CO2 capture," Energy, Elsevier, vol. 175(C), pages 445-455.
    14. Seddighi, Sadegh & Clough, Peter T. & Anthony, Edward J. & Hughes, Robin W. & Lu, Ping, 2018. "Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds," Applied Energy, Elsevier, vol. 232(C), pages 527-542.
    15. Moon, Ji-Hong & Jo, Sung-Ho & Park, Sung Jin & Khoi, Nguyen Hoang & Seo, Myung Won & Ra, Ho Won & Yoon, Sang-Jun & Yoon, Sung-Min & Lee, Jae-Goo & Mun, Tae-Young, 2019. "Carbon dioxide purity and combustion characteristics of oxy firing compared to air firing in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 166(C), pages 183-192.
    16. Salinero, J. & Gómez-Barea, A. & Fuentes-Cano, D. & Leckner, B., 2018. "The influence of CO2 gas concentration on the char temperature and conversion during oxy-fuel combustion in a fluidized bed," Applied Energy, Elsevier, vol. 215(C), pages 116-130.
    17. Lauri Loo & Alar Konist & Dmitri Neshumayev & Tõnu Pihu & Birgit Maaten & Andres Siirde, 2018. "Ash and Flue Gas from Oil Shale Oxy-Fuel Circulating Fluidized Bed Combustion," Energies, MDPI, vol. 11(5), pages 1-12, May.
    18. Singh, Ravi Inder & Kumar, Rajesh, 2016. "Current status and experimental investigation of oxy-fired fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 398-420.
    19. Wu, Zhijun & Kang, Zhe & Deng, Jun & Hu, Zongjie & Li, Liguang, 2016. "Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine," Applied Energy, Elsevier, vol. 184(C), pages 594-604.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1424-:d:222539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.