IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4074-d829816.html
   My bibliography  Save this article

Magnetic Field Analysis of an Inner-Mounted Permanent Magnet Synchronous Motor for New Energy Vehicles

Author

Listed:
  • Huihui Geng

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China)

  • Xueyi Zhang

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China)

  • Shilong Yan

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China)

  • Yufeng Zhang

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China)

  • Lei Wang

    (Technology Center, Weifang No. 1 Motor Factory Co., Ltd., Weifang 262127, China)

  • Yutong Han

    (Research and Development Center, Shandong Hapuwo Power Technology Co., Ltd., Zibo 255300, China)

  • Wei Wang

    (School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255049, China)

Abstract

The motor is an important component that affects the output performance of new energy vehicles (using new energy sources such as electric energy and hydrogen fuel energy to drive the motor and provide kinetic energy). Motors with high power and low noise can effectively improve the dynamic performance, passability and smoothness of new energy vehicles and bring a comfortable experience to driver and passengers. The magnetic field analytical model of the inner-mounted permanent magnet synchronous motor (IPMSM) is studied to improve its output quality. The motor is divided into four subdomains: the stator slot subdomain, the stator slot notch subdomain, the air-gap subdomain, and the permanent magnet (PM) subdomain. The general solution of the vector magnetic potential of each subdomain is solved, and the expression of magnetic flux density of each subdomain is derived. Meanwhile, the analytical model of the non-uniform air gap is established according to the uniform air-gap model. The model’s accuracy is verified by finite element analysis and prototype tests. The results show that the calculation results of the analytical model are effective. The model can be applied to predict the no-load back electromotive force (EMF) and cogging torque of the motor under different main air gaps. It also provides an effective and fast analysis method for the design and optimization of IPMSM for new energy vehicles.

Suggested Citation

  • Huihui Geng & Xueyi Zhang & Shilong Yan & Yufeng Zhang & Lei Wang & Yutong Han & Wei Wang, 2022. "Magnetic Field Analysis of an Inner-Mounted Permanent Magnet Synchronous Motor for New Energy Vehicles," Energies, MDPI, vol. 15(11), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4074-:d:829816
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4074/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4074/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven Hayslett & Elias Strangas, 2021. "Analytical Design of Sculpted Rotor Interior Permanent Magnet Machines," Energies, MDPI, vol. 14(16), pages 1-22, August.
    2. Wenjing Hu & Xueyi Zhang & Hongbin Yin & Huihui Geng & Yufeng Zhang & Liwei Shi, 2020. "Analysis of Magnetic Field and Electromagnetic Performance of a New Hybrid Excitation Synchronous Motor with dual-V type Magnets," Energies, MDPI, vol. 13(6), pages 1-19, March.
    3. In-Soo Song & Byoung-Wook Jo & Ki-Chan Kim, 2021. "Analysis of an IPMSM Hybrid Magnetic Equivalent Circuit," Energies, MDPI, vol. 14(16), pages 1-17, August.
    4. Mingchuan Liu & Jibin Zou & Yongxiang Xu & Hua Lan & Guodong Yu, 2022. "Vibration Enhancement or Weakening Effect Caused by Permanent Magnet Synchronous Motor Radial and Tangential Force Formed by Tooth Harmonics," Energies, MDPI, vol. 15(3), pages 1-11, January.
    5. Kifayat Ullah & Jaroslaw Guzinski & Adeel Feroz Mirza, 2022. "Critical Review on Robust Speed Control Techniques for Permanent Magnet Synchronous Motor (PMSM) Speed Regulation," Energies, MDPI, vol. 15(3), pages 1-13, February.
    6. Huihui Geng & Xueyi Zhang & Yufeng Zhang & Wenjing Hu & Yulong Lei & Xiaoming Xu & Aichuan Wang & Shanjian Wang & Liwei Shi, 2020. "Development of Brushless Claw Pole Electrical Excitation and Combined Permanent Magnet Hybrid Excitation Generator for Vehicles," Energies, MDPI, vol. 13(18), pages 1-13, September.
    7. Yunfei Zhang & Can Zhao & Bin Dai & Zhiheng Li, 2022. "Dynamic Simulation of Permanent Magnet Synchronous Motor (PMSM) Electric Vehicle Based on Simulink," Energies, MDPI, vol. 15(3), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonino Di Gerlando & Claudio Ricca, 2023. "Analytical Modeling of Magnetic Field Distribution at No Load for Surface Mounted Permanent Magnet Machines," Energies, MDPI, vol. 16(7), pages 1-19, April.
    2. Xingxing Wang & Peilin Ye & Yujie Zhang & Hongjun Ni & Yelin Deng & Shuaishuai Lv & Yinnan Yuan & Yu Zhu, 2022. "Parameter Optimization Method for Power System of Medium-Sized Bus Based on Orthogonal Test," Energies, MDPI, vol. 15(19), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huihui Geng & Xueyi Zhang & Yufeng Zhang & Wenjing Hu & Yulong Lei & Xiaoming Xu & Aichuan Wang & Shanjian Wang & Liwei Shi, 2020. "Development of Brushless Claw Pole Electrical Excitation and Combined Permanent Magnet Hybrid Excitation Generator for Vehicles," Energies, MDPI, vol. 13(18), pages 1-13, September.
    2. Claudiu-Ionel Nicola & Marcel Nicola, 2023. "Improved Performance for PMSM Sensorless Control Based on the LADRC Controller, ESO-Type Observer, DO-Type Observer, and RL-TD3 Agent," Mathematics, MDPI, vol. 11(15), pages 1-25, July.
    3. Liqin Wu & Hao Chen & Tingyue Yu & Chengzhi Sun & Lin Wang & Xuerong Ye & Guofu Zhai, 2023. "Robust Design Optimization of the Cogging Torque for a PMSM Based on Manufacturing Uncertainties Analysis and Approximate Modeling," Energies, MDPI, vol. 16(2), pages 1-24, January.
    4. Gustav Mörée & Mats Leijon, 2022. "Overview of Hybrid Excitation in Electrical Machines," Energies, MDPI, vol. 15(19), pages 1-38, October.
    5. Steven Hayslett & Thang Pham & Elias Strangas, 2022. "Analytical Minimization of Interior Permanent Magnet Machine Torque Pulsations by Design of Sculpted Rotor," Energies, MDPI, vol. 15(11), pages 1-17, June.
    6. Yanfei Cao & Shuxin Xiao & Zhichen Lin, 2022. "A Flying Restart Strategy for Position Sensorless PMSM Driven by Quasi-Z-Source Inverter," Energies, MDPI, vol. 15(9), pages 1-15, May.
    7. Hongjin Hu & Haoze Wang & Kun Liu & Jingbo Wei & Xiangjie Shen, 2022. "A Simplified Space Vector Pulse Width Modulation Algorithm of a High-Speed Permanent Magnet Synchronous Machine Drive for a Flywheel Energy Storage System," Energies, MDPI, vol. 15(11), pages 1-21, June.
    8. Anmol Aggarwal & Matthew Meier & Elias Strangas & John Agapiou, 2021. "Analysis of Modular Stator PMSM Manufactured Using Oriented Steel," Energies, MDPI, vol. 14(20), pages 1-19, October.
    9. Marcin Wardach & Ryszard Palka & Piotr Paplicki & Pawel Prajzendanc & Tomasz Zarebski, 2020. "Modern Hybrid Excited Electric Machines," Energies, MDPI, vol. 13(22), pages 1-21, November.
    10. Alistair Duffy & Gang Zhang, 2023. "Electromagnetic Design and Analysis in Electrical Power Conversion and Usage," Energies, MDPI, vol. 16(5), pages 1-10, February.
    11. Shenghui Li & Zhenxing Sun & Ying Shi, 2022. "A Composite Control Method for Permanent Magnet Synchronous Motor System with Nonlinearly Parameterized-Uncertainties," Energies, MDPI, vol. 15(19), pages 1-15, October.
    12. Christian Aldrete-Maldonado & Ramon Ramirez-Villalobos & Luis N. Coria & Corina Plata-Ante, 2023. "Sensorless Scheme for Permanent-Magnet Synchronous Motors Susceptible to Time-Varying Load Torques," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    13. Yufeng Zhang & Mingling Gao & Lei Wang & Xueyi Zhang & Mingjun Xu & Wenjing Hu & Luyao Wang, 2023. "Study of Electromagnetic Characteristics of Brushless Reverse Claw-Pole Electrically Excited Generators for Automobiles," Energies, MDPI, vol. 16(6), pages 1-15, March.
    14. Antonino Di Gerlando & Claudio Ricca, 2023. "Analytical Modeling of Magnetic Field Distribution at No Load for Surface Mounted Permanent Magnet Machines," Energies, MDPI, vol. 16(7), pages 1-19, April.
    15. Xiaolei Cai & Qixuan Wang & Yucheng Wang & Li Zhang, 2023. "Research on a Variable-Leakage-Flux Permanent Magnet Motor Control System Based on an Adaptive Tracking Estimator," Energies, MDPI, vol. 16(2), pages 1-16, January.
    16. Gongrun Wang & Yongxing Wang & Lifan Zhang & Shutian Xue & Enyuan Dong & Jiyan Zou, 2021. "A Novel Model of Electromechanical Contactors for Predicting Dynamic Characteristics," Energies, MDPI, vol. 14(22), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4074-:d:829816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.