IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4124-d831238.html
   My bibliography  Save this article

Analytical Minimization of Interior Permanent Magnet Machine Torque Pulsations by Design of Sculpted Rotor

Author

Listed:
  • Steven Hayslett

    (Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA)

  • Thang Pham

    (Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA)

  • Elias Strangas

    (Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA)

Abstract

A new and efficient analytical optimization methodology for the design of rotor features is developed and used in interior permanent magnet motors (IPM). The analytical methodology is based on an extended winding function theory to include the IPM rotor’s primary and secondary reluctance paths and the non-homogeneous airgap of the rotor sculpt features. The shape and placement of the rotor features, derived from the analytical-based optimization process, show the improvement in torque average and torque ripple of the IPM machine at a fraction of computational effort. The analytical optimization results are validated with finite element analysis via an exhaustive search.

Suggested Citation

  • Steven Hayslett & Thang Pham & Elias Strangas, 2022. "Analytical Minimization of Interior Permanent Magnet Machine Torque Pulsations by Design of Sculpted Rotor," Energies, MDPI, vol. 15(11), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4124-:d:831238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Steven Hayslett & Elias Strangas, 2021. "Analytical Design of Sculpted Rotor Interior Permanent Magnet Machines," Energies, MDPI, vol. 14(16), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anmol Aggarwal & Matthew Meier & Elias Strangas & John Agapiou, 2021. "Analysis of Modular Stator PMSM Manufactured Using Oriented Steel," Energies, MDPI, vol. 14(20), pages 1-19, October.
    2. Huihui Geng & Xueyi Zhang & Shilong Yan & Yufeng Zhang & Lei Wang & Yutong Han & Wei Wang, 2022. "Magnetic Field Analysis of an Inner-Mounted Permanent Magnet Synchronous Motor for New Energy Vehicles," Energies, MDPI, vol. 15(11), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4124-:d:831238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.