IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3469-d811870.html
   My bibliography  Save this article

A Flying Restart Strategy for Position Sensorless PMSM Driven by Quasi-Z-Source Inverter

Author

Listed:
  • Yanfei Cao

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Shuxin Xiao

    (School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China)

  • Zhichen Lin

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

The accurate estimation of rotor position and speed before flying restart is of great significance to improve the operation reliability of permanent magnet synchronous motor systems. The traditional multizero vector short-circuit method can improve the estimation accuracy of speed and rotor position, but the increased number of short-circuits reduces the electromagnetic torque response speed after the power supply recovers. In order to accurately estimate the initial speed and rotor position before the flying restart and effectively improve the electromagnetic torque response speed, a shoot-through zero vector short-circuit method based on quasi-Z-source inverter (qZSI) is proposed. This method breaks the limitation of regulating DC link voltage under the normal operation of the motor in the conventional methods, and puts forward a new idea of advancing the regulation of the DC link voltage to the stage of abnormal operation before the motor restarts. By designing the insertion mode of the mixed vectors and analyzing the action time of each vector before the flying restart, the accurate estimation of position and speed is realized and, meanwhile, the boost of the qZSI’s DC link voltage is achieved, thus giving the sensorless flying restart method a faster torque response speed for the PMSM system driven by qZSIs.

Suggested Citation

  • Yanfei Cao & Shuxin Xiao & Zhichen Lin, 2022. "A Flying Restart Strategy for Position Sensorless PMSM Driven by Quasi-Z-Source Inverter," Energies, MDPI, vol. 15(9), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3469-:d:811870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3469/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3469/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcel Nicola & Claudiu-Ionel Nicola & Dan Selișteanu, 2022. "Improvement of PMSM Sensorless Control Based on Synergetic and Sliding Mode Controllers Using a Reinforcement Learning Deep Deterministic Policy Gradient Agent," Energies, MDPI, vol. 15(6), pages 1-30, March.
    2. Dongliang Liu & Xinhua Guo & Youjian Lei & Rongkun Wang & Ruipei Chen & Fenyu Chen & Zhongshen Li, 2022. "An Improved Control Strategy of PMSM Drive System with Integrated Bidirectional DC/DC," Energies, MDPI, vol. 15(6), pages 1-16, March.
    3. Mohammad Zaid & Chang-Hua Lin & Shahrukh Khan & Javed Ahmad & Mohd Tariq & Arshad Mahmood & Adil Sarwar & Basem Alamri & Ahmad Alahmadi, 2021. "A Family of Transformerless Quadratic Boost High Gain DC-DC Converters," Energies, MDPI, vol. 14(14), pages 1-25, July.
    4. Kifayat Ullah & Jaroslaw Guzinski & Adeel Feroz Mirza, 2022. "Critical Review on Robust Speed Control Techniques for Permanent Magnet Synchronous Motor (PMSM) Speed Regulation," Energies, MDPI, vol. 15(3), pages 1-13, February.
    5. Youssouf Mini & Ngac Ky Nguyen & Eric Semail & Duc Tan Vu, 2022. "Enhancement of Sensorless Control for Non-Sinusoidal Multiphase Drives-Part I: Operation in Medium and High-Speed Range," Energies, MDPI, vol. 15(2), pages 1-25, January.
    6. Ivan Grgić & Dinko Vukadinović & Mateo Bašić & Matija Bubalo, 2021. "Efficiency Boost of a Quasi-Z-Source Inverter: A Novel Shoot-Through Injection Method with Dead-Time," Energies, MDPI, vol. 14(14), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Nicola & Claudiu-Ionel Nicola, 2022. "Improvement of Linear and Nonlinear Control for PMSM Using Computational Intelligence and Reinforcement Learning," Mathematics, MDPI, vol. 10(24), pages 1-34, December.
    2. Claudiu-Ionel Nicola & Marcel Nicola, 2023. "Improved Performance for PMSM Sensorless Control Based on the LADRC Controller, ESO-Type Observer, DO-Type Observer, and RL-TD3 Agent," Mathematics, MDPI, vol. 11(15), pages 1-25, July.
    3. Hongjin Hu & Haoze Wang & Kun Liu & Jingbo Wei & Xiangjie Shen, 2022. "A Simplified Space Vector Pulse Width Modulation Algorithm of a High-Speed Permanent Magnet Synchronous Machine Drive for a Flywheel Energy Storage System," Energies, MDPI, vol. 15(11), pages 1-21, June.
    4. Liqin Wu & Hao Chen & Tingyue Yu & Chengzhi Sun & Lin Wang & Xuerong Ye & Guofu Zhai, 2023. "Robust Design Optimization of the Cogging Torque for a PMSM Based on Manufacturing Uncertainties Analysis and Approximate Modeling," Energies, MDPI, vol. 16(2), pages 1-24, January.
    5. Shahrukh Khan & Arshad Mahmood & Mohammad Zaid & Mohd Tariq & Chang-Hua Lin & Javed Ahmad & Basem Alamri & Ahmad Alahmadi, 2021. "A High Step-up DC-DC Converter Based on the Voltage Lift Technique for Renewable Energy Applications," Sustainability, MDPI, vol. 13(19), pages 1-24, October.
    6. Yongjie Yang & Xudong Liu, 2022. "A Novel Nonsingular Terminal Sliding Mode Observer-Based Sensorless Control for Electrical Drive System," Mathematics, MDPI, vol. 10(17), pages 1-16, August.
    7. Dinko Vukadinović, 2022. "Advanced Control Techniques for Wind/Solar/Battery Systems," Energies, MDPI, vol. 15(9), pages 1-2, May.
    8. Di Liu & Junwei Cao & Mingshuang Liu, 2022. "Joint Optimization of Energy Storage Sharing and Demand Response in Microgrid Considering Multiple Uncertainties," Energies, MDPI, vol. 15(9), pages 1-20, April.
    9. Huihui Geng & Xueyi Zhang & Shilong Yan & Yufeng Zhang & Lei Wang & Yutong Han & Wei Wang, 2022. "Magnetic Field Analysis of an Inner-Mounted Permanent Magnet Synchronous Motor for New Energy Vehicles," Energies, MDPI, vol. 15(11), pages 1-22, June.
    10. Shenghui Li & Zhenxing Sun & Ying Shi, 2022. "A Composite Control Method for Permanent Magnet Synchronous Motor System with Nonlinearly Parameterized-Uncertainties," Energies, MDPI, vol. 15(19), pages 1-15, October.
    11. Christian Aldrete-Maldonado & Ramon Ramirez-Villalobos & Luis N. Coria & Corina Plata-Ante, 2023. "Sensorless Scheme for Permanent-Magnet Synchronous Motors Susceptible to Time-Varying Load Torques," Mathematics, MDPI, vol. 11(14), pages 1-20, July.
    12. Jose Solis-Rodriguez & Julio C. Rosas-Caro & Avelina Alejo-Reyes & Jesus E. Valdez-Resendiz, 2023. "Optimal Selection of Capacitors for a Low Energy Storage Quadratic Boost Converter (LES-QBC)," Energies, MDPI, vol. 16(6), pages 1-17, March.
    13. Yoon-Seong Lee & Kyoung-Min Choo & Won-Sang Jeong & Chang-Hee Lee & Junsin Yi & Chung-Yuen Won, 2023. "A Virtual Impedance-Based Flying Start Considering Transient Characteristics for Permanent Magnet Synchronous Machine Drive Systems," Energies, MDPI, vol. 16(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3469-:d:811870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.