IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p3997-d826970.html
   My bibliography  Save this article

Simulation of Water Influx and Gasified Gas Transport during Underground Coal Gasification with Controlled Retracting Injection Point Technology

Author

Listed:
  • Yanpeng Chen

    (Petroleum Exploration and Development Research Institute, PetroChina, Beijing 100083, China)

  • Tianduoyi Wang

    (Coalbed Methane Research Center, China University of Petroleum (Beijing), Beijing 102249, China)

  • Jinhua Zhang

    (Petroleum Exploration and Development Research Institute, PetroChina, Beijing 100083, China)

  • Mengyuan Zhang

    (Petroleum Exploration and Development Research Institute, PetroChina, Beijing 100083, China)

  • Junjie Xue

    (Petroleum Exploration and Development Research Institute, PetroChina, Beijing 100083, China)

  • Juntai Shi

    (Coalbed Methane Research Center, China University of Petroleum (Beijing), Beijing 102249, China)

  • Yongshang Kang

    (College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China)

  • Shengjie Li

    (College of Geophysics and Information, China University of Petroleum (Beijing), Beijing 102249, China)

Abstract

Underground coal gasification (UCG) may change the energy consumption structure from coal-dominated to gas-dominated in the years to come. Before that, three important problems need to be solved, including failure of gasification due to large amounts of water pouring into the gasifier, environmental pollution caused by gas migration to the surface, and low calorific value caused by poor control of the degree of gasification. In this study, a geological model is first established using the computer modeling group (CMG), a commercial software package for reservoir simulation. Then, the inflow of coal seam water into the gasifier during the controlled retracting injection point (CRIP) gasification process is simulated based on the geological model, and the maximum instantaneous water inflow is simulated too. Meanwhile, the migration of gasified gas is also simulated, and the migration discipline of different gases is shown. Finally, the pressure distributions in two stages are presented, pointing out the dynamic pressure characteristics during the UCG process. The results show that (a) the cavity width, production pressure, and gasifier pressure are negatively correlated with the maximum instantaneous water inflow, while the initial formation pressure, injection pressure, coal seam floor aquifer energy, and temperature are positively correlated; (b) CO 2 is mainly concentrated near the production well and largely does not migrate upward, O 2 migrates upward slowly, while CH 4 , CO and H 2 migrate relatively quickly. When the injection–production pressure difference is 2 MPa, it takes 33.5 years, 40 years, and 44.6 years for CH 4 , CO, and H 2 to migrate from a depth of 1000 m to 200 m, respectively. When the pressure difference increases to 4 MPa, the gas migration rate increases about two-fold. The aquifer (3 MPa) above a coal outcrop can slow down the upward migration rate of gas by 0.03 m/day; (c) the pressure near the production well changes more significantly than the pressure near the injection well. The overall gasifier pressure rises with gasifier width increases, and the pressure distribution always presents an asymmetric unimodal distribution during the receding process of the gas injection point. The simulation work can provide a theoretical basis for the operation parameters design and monitoring of the well deployment, ensuring the safety and reliability of on-site gasification.

Suggested Citation

  • Yanpeng Chen & Tianduoyi Wang & Jinhua Zhang & Mengyuan Zhang & Junjie Xue & Juntai Shi & Yongshang Kang & Shengjie Li, 2022. "Simulation of Water Influx and Gasified Gas Transport during Underground Coal Gasification with Controlled Retracting Injection Point Technology," Energies, MDPI, vol. 15(11), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3997-:d:826970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/3997/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/3997/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daggupati, Sateesh & Mandapati, Ramesh N. & Mahajani, Sanjay M. & Ganesh, Anuradda & Mathur, D.K. & Sharma, R.K. & Aghalayam, Preeti, 2010. "Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification," Energy, Elsevier, vol. 35(6), pages 2374-2386.
    2. Magdalena Pankiewicz-Sperka & Krzysztof Kapusta & Wioleta Basa & Katarzyna Stolecka, 2021. "Characteristics of Water Contaminants from Underground Coal Gasification (UCG) Process—Effect of Coal Properties and Gasification Pressure," Energies, MDPI, vol. 14(20), pages 1-12, October.
    3. Yuteng Xiao & Jihang Yin & Yifan Hu & Junzhe Wang & Hongsheng Yin & Honggang Qi, 2019. "Monitoring and Control in Underground Coal Gasification: Current Research Status and Future Perspective," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    4. Stefan Zelenak & Erika Skvarekova & Andrea Senova & Gabriel Wittenberger, 2021. "The Usage of UCG Technology as Alternative to Reach Low-Carbon Energy," Energies, MDPI, vol. 14(13), pages 1-15, June.
    5. Krzemień, Alicja, 2019. "Fire risk prevention in underground coal gasification (UCG) within active mines: Temperature forecast by means of MARS models," Energy, Elsevier, vol. 170(C), pages 777-790.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xiaorui & Zhang, Qinghe & Yuan, Liang, 2024. "A coupled thermal-force-chemical-displacement multi-field model for underground coal gasification based on controlled retraction injection point technology and its thermal analysis," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Dong & Haiyang Yi & Yufeng Zhao & Xinggang Wang & Tingxiang Chu & Junjie Xue & Hanqi Wu & Shanshan Chen & Mengyuan Zhang & Hao Chen, 2022. "Investigation of the Evolution of Stratum Fracture during the Cavity Expansion of Underground Coal Gasification," Energies, MDPI, vol. 15(19), pages 1-15, October.
    2. Marek Laciak & Ján Kačur & Milan Durdán, 2022. "Modeling and Control of Energy Conversion during Underground Coal Gasification Process," Energies, MDPI, vol. 15(7), pages 1-6, March.
    3. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    4. Xi Lin & Qingya Liu & Zhenyu Liu, 2018. "Estimation of Effective Diffusion Coefficient of O 2 in Ash Layer in Underground Coal Gasification by Thermogravimetric Apparatus," Energies, MDPI, vol. 11(2), pages 1-14, February.
    5. Mohammadreza Shahbazi & Mehdi Najafi & Mohammad Fatehi Marji, 2019. "On the mitigating environmental aspects of a vertical well in underground coal gasification method," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 373-398, March.
    6. Peter Tauš & Martin Beer, 2022. "Evaluation of the Hydropower Potential of the Torysa River and Its Energy Use in the Process of Reducing Energy Poverty of Local Communities," Energies, MDPI, vol. 15(10), pages 1-15, May.
    7. Lele Feng & Maifan Dong & Yuxin Wu & Junping Gu, 2021. "Comparison of Tar Samples from Reaction Zone and Outlet in Ex-Situ Underground Coal Gasification Experiment," Energies, MDPI, vol. 14(24), pages 1-11, December.
    8. Yufeng Zhao & Zhen Dong & Yanpeng Chen & Hao Chen & Shanshan Chen & Mengyuan Zhang & Junjie Xue & Xinggang Wang & Lixin Jiao, 2023. "Physical Simulation Test of Underground Coal Gasification Cavity Evolution in the Horizontal Segment of U-Shaped Well," Energies, MDPI, vol. 16(8), pages 1-15, April.
    9. Wang, Xiaorui & Zhang, Qinghe & Yuan, Liang, 2024. "A coupled thermal-force-chemical-displacement multi-field model for underground coal gasification based on controlled retraction injection point technology and its thermal analysis," Energy, Elsevier, vol. 293(C).
    10. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    11. Su, Fa-qiang & He, Xiao-long & Dai, Meng-jia & Yang, Jun-nan & Hamanaka, Akihiro & Yu, Yi-he & Li, Wen & Li, Jiao-yuan, 2023. "Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions," Energy, Elsevier, vol. 285(C).
    12. Su, Fa-qiang & Wu, Jun-bo & Tao-Zhang, & Deng, Qi-chao & Yu, Yi-he & Hamanaka, Akihiro & Dai, Meng-Jia & Yang, Jun-Nan & He, Xiao-long, 2023. "Study on the monitoring method of cavity growth in underground coal gasification under laboratory conditions," Energy, Elsevier, vol. 263(PE).
    13. Aleksander Frejowski & Jan Bondaruk & Adam Duda, 2021. "Challenges and Opportunities for End-of-Life Coal Mine Sites: Black-to-Green Energy Approach," Energies, MDPI, vol. 14(5), pages 1-18, March.
    14. Majid Mohammady, 2023. "Badland erosion susceptibility mapping using machine learning data mining techniques, Firozkuh watershed, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 703-721, May.
    15. Jacek Nowak & Magdalena Kokowska-Pawłowska & Joanna Komorek & Marian Wiatowski & Krzysztof Kapusta & Zdzisław Adamczyk, 2022. "Optical Properties of Coal after Ex-Situ Experimental Simulation of Underground Gasification at Pressures of 10 and 40 bar," Energies, MDPI, vol. 15(23), pages 1-19, November.
    16. Milan Durdán & Marta Benková & Marek Laciak & Ján Kačur & Patrik Flegner, 2021. "Regression Models Utilization to the Underground Temperature Determination at Coal Energy Conversion," Energies, MDPI, vol. 14(17), pages 1-28, September.
    17. Li, Xin & Tian, Jijun & Ju, Yiwen & Chen, Yanpeng, 2022. "Permeability variations of lignite and bituminous coals under elevated pyrolysis temperatures (35–600 °C): An experimental study," Energy, Elsevier, vol. 254(PA).
    18. Javed, Syed Bilal & Uppal, Ali Arshad & Bhatti, Aamer Iqbal & Samar, Raza, 2019. "Prediction and parametric analysis of cavity growth for the underground coal gasification project Thar," Energy, Elsevier, vol. 172(C), pages 1277-1290.
    19. Jacek Borgulat & Katarzyna Ponikiewska & Łukasz Jałowiecki & Aleksandra Strugała-Wilczek & Grażyna Płaza, 2022. "Are Wetlands as an Integrated Bioremediation System Applicable for the Treatment of Wastewater from Underground Coal Gasification Processes?," Energies, MDPI, vol. 15(12), pages 1-19, June.
    20. Chen, Liangzhou & Qi, Xuyao & Zhang, Yabo & Rao, Yuxuan & Wang, Tao, 2022. "Gasification characteristics and thermodynamic analysis of ultra-lean oxygen oxidized lignite residues," Energy, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3997-:d:826970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.