IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224003864.html
   My bibliography  Save this article

A coupled thermal-force-chemical-displacement multi-field model for underground coal gasification based on controlled retraction injection point technology and its thermal analysis

Author

Listed:
  • Wang, Xiaorui
  • Zhang, Qinghe
  • Yuan, Liang

Abstract

Underground coal gasification is an essential means of meeting the growing energy needs of some countries. In this paper, a new numerical simulation method of thermal-force-chemical-displacement multi-field coupling is developed, and in order to better adapt to the actual working conditions, taking Shanjiaoshu Coal Mine as the geological background, the first gasification working face of No. 12 coal seam is simulated based on the controlled retraction injection point technology. This method is used to simulate the heating of coal body by the ignition device at the initial stage of UCG, the chemical-thermal changes triggered by spontaneous combustion of the coal body under the continuous backward movement of the injection point, and the simulation of the formation of the cavity after the coal gasification reaction. Finally, the evolution of temperature and displacement fields in No.12 coal seam after gasification reaction is analyzed. Therefore, this study aims to simulate the actual working conditions more realistically, optimize the UCG technology, and produce more clean energy syngas to improve the energy situation in China.

Suggested Citation

  • Wang, Xiaorui & Zhang, Qinghe & Yuan, Liang, 2024. "A coupled thermal-force-chemical-displacement multi-field model for underground coal gasification based on controlled retraction injection point technology and its thermal analysis," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003864
    DOI: 10.1016/j.energy.2024.130614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Javed, Syed Bilal & Uppal, Ali Arshad & Bhatti, Aamer Iqbal & Samar, Raza, 2019. "Prediction and parametric analysis of cavity growth for the underground coal gasification project Thar," Energy, Elsevier, vol. 172(C), pages 1277-1290.
    2. Iwaszenko, Sebastian & Howaniec, Natalia & Smoliński, Adam, 2019. "Determination of random pore model parameters for underground coal gasification simulation," Energy, Elsevier, vol. 166(C), pages 972-978.
    3. Wang, Cai-Ping & Deng, Yin & Xiao, Yang & Deng, Jun & Shu, Chi-Min & Jiang, Zhi-Gang, 2022. "Gas-heat characteristics and oxidation kinetics of coal spontaneous combustion in heating and decaying processes," Energy, Elsevier, vol. 250(C).
    4. Imran, Muhammad & Kumar, Dileep & Kumar, Naresh & Qayyum, Abdul & Saeed, Ahmed & Bhatti, Muhammad Shamim, 2014. "Environmental concerns of underground coal gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 600-610.
    5. Yanpeng Chen & Tianduoyi Wang & Jinhua Zhang & Mengyuan Zhang & Junjie Xue & Juntai Shi & Yongshang Kang & Shengjie Li, 2022. "Simulation of Water Influx and Gasified Gas Transport during Underground Coal Gasification with Controlled Retracting Injection Point Technology," Energies, MDPI, vol. 15(11), pages 1-29, May.
    6. Laciak, Marek & Kostúr, Karol & Durdán, Milan & Kačur, Ján & Flegner, Patrik, 2016. "The analysis of the underground coal gasification in experimental equipment," Energy, Elsevier, vol. 114(C), pages 332-343.
    7. Su, Fa-qiang & He, Xiao-long & Dai, Meng-jia & Yang, Jun-nan & Hamanaka, Akihiro & Yu, Yi-he & Li, Wen & Li, Jiao-yuan, 2023. "Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions," Energy, Elsevier, vol. 285(C).
    8. Daggupati, Sateesh & Mandapati, Ramesh N. & Mahajani, Sanjay M. & Ganesh, Anuradda & Mathur, D.K. & Sharma, R.K. & Aghalayam, Preeti, 2010. "Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification," Energy, Elsevier, vol. 35(6), pages 2374-2386.
    9. Mocek, Piotr & Pieszczek, Marek & Świądrowski, Jerzy & Kapusta, Krzysztof & Wiatowski, Marian & Stańczyk, Krzysztof, 2016. "Pilot-scale underground coal gasification (UCG) experiment in an operating Mine “Wieczorek” in Poland," Energy, Elsevier, vol. 111(C), pages 313-321.
    10. Liu, Huan & Guo, Wei & Liu, Shuqin, 2022. "Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process," Energy, Elsevier, vol. 258(C).
    11. Prabu, V. & Jayanti, S., 2011. "Simulation of cavity formation in underground coal gasification using bore hole combustion experiments," Energy, Elsevier, vol. 36(10), pages 5854-5864.
    12. Su, Fa-qiang & Wu, Jun-bo & Tao-Zhang, & Deng, Qi-chao & Yu, Yi-he & Hamanaka, Akihiro & Dai, Meng-Jia & Yang, Jun-Nan & He, Xiao-long, 2023. "Study on the monitoring method of cavity growth in underground coal gasification under laboratory conditions," Energy, Elsevier, vol. 263(PE).
    13. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    14. Jowkar, Amin & Sereshki, Farhang & Najafi, Mehdi, 2018. "A new model for evaluation of cavity shape and volume during Underground Coal Gasification process," Energy, Elsevier, vol. 148(C), pages 756-765.
    15. Kahraman, Ugur & Dincer, Ibrahim, 2023. "Development and assessment of an integrated underground gasification system for cleaner outputs," Energy, Elsevier, vol. 285(C).
    16. Su, Fa-qiang & Hamanaka, Akihiro & Itakura, Ken-ichi & Zhang, Wenyan & Deguchi, Gota & Sato, Kohki & Takahashi, Kazuhiro & Kodama, Jun-ichi, 2018. "Monitoring and evaluation of simulated underground coal gasification in an ex-situ experimental artificial coal seam system," Applied Energy, Elsevier, vol. 223(C), pages 82-92.
    17. Deng, Jun & Yang, Nannan & Wang, Caiping & Yin, Deng & Xiaoyong, Zhao & He, Yongjun, 2023. "Study on staged heat transfer law of coal spontaneous combustion in deep mines," Energy, Elsevier, vol. 285(C).
    18. Daggupati, Sateesh & Mandapati, Ramesh N. & Mahajani, Sanjay M. & Ganesh, Anuradda & Sapru, R.K. & Sharma, R.K. & Aghalayam, Preeti, 2011. "Laboratory studies on cavity growth and product gas composition in the context of underground coal gasification," Energy, Elsevier, vol. 36(3), pages 1776-1784.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Fa-qiang & Wu, Jun-bo & Tao-Zhang, & Deng, Qi-chao & Yu, Yi-he & Hamanaka, Akihiro & Dai, Meng-Jia & Yang, Jun-Nan & He, Xiao-long, 2023. "Study on the monitoring method of cavity growth in underground coal gasification under laboratory conditions," Energy, Elsevier, vol. 263(PE).
    2. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    3. Yuteng Xiao & Jihang Yin & Yifan Hu & Junzhe Wang & Hongsheng Yin & Honggang Qi, 2019. "Monitoring and Control in Underground Coal Gasification: Current Research Status and Future Perspective," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    4. Huijun Fang & Yuewu Liu & Tengze Ge & Taiyi Zheng & Yueyu Yu & Danlu Liu & Jiuge Ding & Longlong Li, 2022. "A Review of Research on Cavity Growth in the Context of Underground Coal Gasification," Energies, MDPI, vol. 15(23), pages 1-21, December.
    5. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    6. Hongtao Liu & Feng Chen & Yuanyuan Wang & Gang Liu & Hong Yao & Shuqin Liu, 2018. "Experimental Study of Reverse Underground Coal Gasification," Energies, MDPI, vol. 11(11), pages 1-13, October.
    7. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    8. Javed, Syed Bilal & Uppal, Ali Arshad & Bhatti, Aamer Iqbal & Samar, Raza, 2019. "Prediction and parametric analysis of cavity growth for the underground coal gasification project Thar," Energy, Elsevier, vol. 172(C), pages 1277-1290.
    9. Stefan Zelenak & Erika Skvarekova & Andrea Senova & Gabriel Wittenberger, 2021. "The Usage of UCG Technology as Alternative to Reach Low-Carbon Energy," Energies, MDPI, vol. 14(13), pages 1-15, June.
    10. Mohammadreza Shahbazi & Mehdi Najafi & Mohammad Fatehi Marji, 2019. "On the mitigating environmental aspects of a vertical well in underground coal gasification method," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(3), pages 373-398, March.
    11. Prabu, V., 2015. "Integration of in-situ CO2-oxy coal gasification with advanced power generating systems performing in a chemical looping approach of clean combustion," Applied Energy, Elsevier, vol. 140(C), pages 1-13.
    12. Su, Fa-qiang & He, Xiao-long & Dai, Meng-jia & Yang, Jun-nan & Hamanaka, Akihiro & Yu, Yi-he & Li, Wen & Li, Jiao-yuan, 2023. "Estimation of the cavity volume in the gasification zone for underground coal gasification under different oxygen flow conditions," Energy, Elsevier, vol. 285(C).
    13. Zhen Dong & Haiyang Yi & Yufeng Zhao & Xinggang Wang & Tingxiang Chu & Junjie Xue & Hanqi Wu & Shanshan Chen & Mengyuan Zhang & Hao Chen, 2022. "Investigation of the Evolution of Stratum Fracture during the Cavity Expansion of Underground Coal Gasification," Energies, MDPI, vol. 15(19), pages 1-15, October.
    14. Prabu, V. & Jayanti, S., 2012. "Laboratory scale studies on simulated underground coal gasification of high ash coals for carbon-neutral power generation," Energy, Elsevier, vol. 46(1), pages 351-358.
    15. Su, Fa-qiang & Itakura, Ken-ichi & Deguchi, Gota & Ohga, Koutarou, 2017. "Monitoring of coal fracturing in underground coal gasification by acoustic emission techniques," Applied Energy, Elsevier, vol. 189(C), pages 142-156.
    16. Karol Kostúr & Marek Laciak & Milan Durdan, 2018. "Some Influences of Underground Coal Gasification on the Environment," Sustainability, MDPI, vol. 10(5), pages 1-31, May.
    17. Su, Fa-qiang & Hamanaka, Akihiro & Itakura, Ken-ichi & Zhang, Wenyan & Deguchi, Gota & Sato, Kohki & Takahashi, Kazuhiro & Kodama, Jun-ichi, 2018. "Monitoring and evaluation of simulated underground coal gasification in an ex-situ experimental artificial coal seam system," Applied Energy, Elsevier, vol. 223(C), pages 82-92.
    18. Yufeng Zhao & Zhen Dong & Yanpeng Chen & Hao Chen & Shanshan Chen & Mengyuan Zhang & Junjie Xue & Xinggang Wang & Lixin Jiao, 2023. "Physical Simulation Test of Underground Coal Gasification Cavity Evolution in the Horizontal Segment of U-Shaped Well," Energies, MDPI, vol. 16(8), pages 1-15, April.
    19. Kumari, Geeta & Vairakannu, Prabu, 2018. "CO2-air based two stage gasification of low ash and high ash Indian coals in the context of underground coal gasification," Energy, Elsevier, vol. 143(C), pages 822-832.
    20. Dong, Maifan & Feng, Lele & Qin, Botao, 2023. "Characteristics of coal gasification with CO2 after microwave irradiation based on TGA, FTIR and DFT theory," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.