IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1334-d332056.html
   My bibliography  Save this article

Large-scale Experimental Investigations to Evaluate the Feasibility of Producing Methane-Rich Gas (SNG) through Underground Coal Gasification Process. Effect of Coal Rank and Gasification Pressure

Author

Listed:
  • Krzysztof Kapusta

    (Główny Instytut Górnictwa (Central Mining Institute), 40-166 Katowice, Poland)

  • Marian Wiatowski

    (Główny Instytut Górnictwa (Central Mining Institute), 40-166 Katowice, Poland)

  • Krzysztof Stańczyk

    (Główny Instytut Górnictwa (Central Mining Institute), 40-166 Katowice, Poland)

  • Renato Zagorščak

    (Geoenvironmental Research Centre (GRC), School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Hywel Rhys Thomas

    (Geoenvironmental Research Centre (GRC), School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

Abstract

An experimental campaign on the methane-oriented underground coal gasification (UCG) process was carried out in a large-scale laboratory installation. Two different types of coal were used for the oxygen/steam blown experiments, i.e., “Six Feet” semi-anthracite (Wales) and “Wesoła” hard coal (Poland). Four multi-day gasification tests (96 h continuous processes) were conducted in artificially created coal seams under two distinct pressure regimes-20 and 40 bar. The experiments demonstrated that the methane yields are significantly dependent on both the properties of coal (coal rank) and the pressure regime. The average CH 4 concentration for “Six Feet” semi-anthracite was 15.8% vol. at 20 bar and 19.1% vol. at 40 bar. During the gasification of “Wesoła” coal, the methane concentrations were 10.9% vol. and 14.8% vol. at 20 and 40 bar, respectively. The “Six Feet” coal gasification was characterized by much higher energy efficiency than gasification of the “Wesoła” coal and for both tested coals, the efficiency increased with gasification pressure. The maximum energy efficiency of 71.6% was obtained for “Six Feet” coal at 40 bar. A positive effect of the increase in gasification pressure on the stabilization of the quantitative parameters of UCG gas was demonstrated.

Suggested Citation

  • Krzysztof Kapusta & Marian Wiatowski & Krzysztof Stańczyk & Renato Zagorščak & Hywel Rhys Thomas, 2020. "Large-scale Experimental Investigations to Evaluate the Feasibility of Producing Methane-Rich Gas (SNG) through Underground Coal Gasification Process. Effect of Coal Rank and Gasification Pressure," Energies, MDPI, vol. 13(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1334-:d:332056
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1334/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1334/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nakaten, Natalie & Schlüter, Ralph & Azzam, Rafig & Kempka, Thomas, 2014. "Development of a techno-economic model for dynamic calculation of cost of electricity, energy demand and CO2 emissions of an integrated UCG–CCS process," Energy, Elsevier, vol. 66(C), pages 779-790.
    2. Yuteng Xiao & Jihang Yin & Yifan Hu & Junzhe Wang & Hongsheng Yin & Honggang Qi, 2019. "Monitoring and Control in Underground Coal Gasification: Current Research Status and Future Perspective," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Nowak & Magdalena Kokowska-Pawłowska & Joanna Komorek & Marian Wiatowski & Krzysztof Kapusta & Zdzisław Adamczyk, 2022. "Optical Properties of Coal after Ex-Situ Experimental Simulation of Underground Gasification at Pressures of 10 and 40 bar," Energies, MDPI, vol. 15(23), pages 1-19, November.
    2. Milan Durdán & Marta Benková & Marek Laciak & Ján Kačur & Patrik Flegner, 2021. "Regression Models Utilization to the Underground Temperature Determination at Coal Energy Conversion," Energies, MDPI, vol. 14(17), pages 1-28, September.
    3. Magdalena Pankiewicz-Sperka & Krzysztof Kapusta & Wioleta Basa & Katarzyna Stolecka, 2021. "Characteristics of Water Contaminants from Underground Coal Gasification (UCG) Process—Effect of Coal Properties and Gasification Pressure," Energies, MDPI, vol. 14(20), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabu, V. & Geeta, K., 2015. "CO2 enhanced in-situ oxy-coal gasification based carbon-neutral conventional power generating systems," Energy, Elsevier, vol. 84(C), pages 672-683.
    2. Christopher Otto & Thomas Kempka, 2015. "Thermo-Mechanical Simulations of Rock Behavior in Underground Coal Gasification Show Negligible Impact of Temperature-Dependent Parameters on Permeability Changes," Energies, MDPI, vol. 8(6), pages 1-28, June.
    3. Christopher Otto & Thomas Kempka, 2017. "Prediction of Steam Jacket Dynamics and Water Balances in Underground Coal Gasification," Energies, MDPI, vol. 10(6), pages 1-17, May.
    4. Sungki Kim & Wonil Ko & Sungsig Bang, 2015. "Analysis of Unit Process Cost for an Engineering-Scale Pyroprocess Facility Using a Process Costing Method in Korea," Energies, MDPI, vol. 8(8), pages 1-23, August.
    5. Onyebuchi, V.E. & Kolios, A. & Hanak, D.P. & Biliyok, C. & Manovic, V., 2018. "A systematic review of key challenges of CO2 transport via pipelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2563-2583.
    6. Feng, Ye & Chen, Jinglong & Luo, Ji, 2024. "Life cycle cost analysis of power generation from underground coal gasification with carbon capture and storage (CCS) to measure the economic feasibility," Resources Policy, Elsevier, vol. 92(C).
    7. Liu, Huan & Guo, Wei & Liu, Shuqin, 2022. "Comparative techno-economic performance analysis of underground coal gasification and surface coal gasification based coal-to-hydrogen process," Energy, Elsevier, vol. 258(C).
    8. Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
    9. Natalie Nakaten & Thomas Kempka, 2019. "Techno-Economic Comparison of Onshore and Offshore Underground Coal Gasification End-Product Competitiveness," Energies, MDPI, vol. 12(17), pages 1-28, August.
    10. Verma, Aman & Olateju, Babatunde & Kumar, Amit, 2015. "Greenhouse gas abatement costs of hydrogen production from underground coal gasification," Energy, Elsevier, vol. 85(C), pages 556-568.
    11. Yanpeng Chen & Tianduoyi Wang & Jinhua Zhang & Mengyuan Zhang & Junjie Xue & Juntai Shi & Yongshang Kang & Shengjie Li, 2022. "Simulation of Water Influx and Gasified Gas Transport during Underground Coal Gasification with Controlled Retracting Injection Point Technology," Energies, MDPI, vol. 15(11), pages 1-29, May.
    12. Fa-qiang Su & Akihiro Hamanaka & Ken-ichi Itakura & Gota Deguchi & Wenyan Zhang & Hua Nan, 2018. "Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam," Energies, MDPI, vol. 11(4), pages 1-11, April.
    13. Ma, Jianli & Li, Qi & Kühn, Michael & Nakaten, Natalie, 2018. "Power-to-gas based subsurface energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 478-496.
    14. Eftekhari, Ali Akbar & Wolf, Karl Heinz & Rogut, Jan & Bruining, Hans, 2017. "Energy and exergy analysis of alternating injection of oxygen and steam in the low emission underground gasification of deep thin coal," Applied Energy, Elsevier, vol. 208(C), pages 62-71.
    15. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    16. Zenon Pilecki & Robert Hildebrandt & Krzysztof Krawiec & Elżbieta Pilecka & Zbigniew Lubosik & Tomasz Łątka, 2023. "Assessment of Combustion Cavern Geometry in Underground Coal Gasification Process with the Use of Borehole Ground-Penetrating Radar," Energies, MDPI, vol. 16(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1334-:d:332056. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.